重庆长寿中学2024年高一数学第二学期期末质量检测模拟试题含解析_第1页
重庆长寿中学2024年高一数学第二学期期末质量检测模拟试题含解析_第2页
重庆长寿中学2024年高一数学第二学期期末质量检测模拟试题含解析_第3页
重庆长寿中学2024年高一数学第二学期期末质量检测模拟试题含解析_第4页
重庆长寿中学2024年高一数学第二学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆长寿中学2024年高一数学第二学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列的前项和为,若,则()A.18 B.13 C.9 D.72.如图,在正方体ABCD﹣A1B1C1D1中,给出以下四个结论:①D1C∥平面A1ABB1②A1D1与平面BCD1相交③AD⊥平面D1DB④平面BCD1⊥平面A1ABB1正确的结论个数是()A.1 B.2 C.3 D.43.在正四棱柱,,则异面直线与所成角的余弦值为A. B. C. D.4.若关于x的不等式x-1-x-2≥A.0,1 B.-1,0 C.-∞,-1∪0,5.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共线,则四边形ABCD为()A.平行四边形 B.矩形 C.梯形 D.菱形6.在数列中,已知,,则该数列前2019项的和()A.2019 B.2020 C.4038 D.40407.已知函数,则下列说法正确的是()A.图像的对称中心是B.在定义域内是增函数C.是奇函数D.图像的对称轴是8.如图,两个正方形和所在平面互相垂直,设、分别是和的中点,那么:①;②平面;③;④、异面.其中不正确的序号是()A.① B.② C.③ D.④9.过点且与直线垂直的直线方程是()A. B. C. D.10.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面二、填空题:本大题共6小题,每小题5分,共30分。11.一艘轮船按照北偏西30°的方向以每小时21海里的速度航行,一个灯塔M原来在轮船的北偏东30°的方向,经过40分钟后,测得灯塔在轮船的北偏东75°的方向,则灯塔和轮船原来的距离是_____海里.12.已知,均为单位向量,它们的夹角为,那么__________.13.已知的内角、、的对边分别为、、,若,,且的面积是,___________.14.已知数列,若对任意正整数都有,则正整数______;15.在平面直角坐标系中,角的顶点在原点,始边与轴的正半轴重合,终边过点,则______16.观察下列等式:(1);(2);(3);(4),……请你根据给定等式的共同特征,并接着写出一个具有这个共同特征的等式(要求与已知等式不重复),这个等式可以是__________________.(答案不唯一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且,向量,.(1)求函数的解析式,并求当时,的单调递增区间;(2)当时,的最大值为5,求的值;(3)当时,若不等式在上恒成立,求实数的取值范围.18.数学的发展推动着科技的进步,正是基于线性代数、群论等数学知识的极化码原理的应用,华为的5G技术领先世界.目前某区域市场中5G智能终端产品的制造由H公司及G公司提供技术支持据市场调研预测,5C商用初期,该区域市场中采用H公司与G公司技术的智能终端产品分别占比及假设两家公司的技术更新周期一致,且随着技术优势的体现每次技术更新后,上一周期采用G公司技术的产品中有20%转而采用H公司技术,采用H公司技术的仅有5%转而采用G公司技术设第n次技术更新后,该区域市场中采用H公司与G公司技术的智能终端产品占比分别为及,不考虑其它因素的影响.(1)用表示,并求实数使是等比数列;(2)经过若干次技术更新后该区域市场采用H公司技术的智能终端产品占比能否达到75%以上?若能,至少需要经过几次技术更新;若不能,说明理由?(参考数据:)19.如图,已知四棱锥,侧面是正三角形,底面为边长2的菱形,,.(1)设平面平面,求证:;(2)求多面体的体积;(3)求二面角的余弦值.20.从全校参加科技知识竞赛初赛的学生试卷中,抽取一个样本,考察竞赛的成绩分布.将样本分成5组,绘成频率分布直方图(如图),图中从左到右各小组的小长方形的高之比是,最后一组的频数是6.请结合频率分布直方图提供的信息,解答下列问题:(1)样本的容量是多少?(2)求样本中成绩在分的学生人数;(3)从样本中成绩在90.5分以上的同学中随机地抽取2人参加决赛,求最高分甲被抽到的概率.21.已知平面向量(1)若,求;(2)若,求与夹角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用等差数列通项公式、前项和列方程组,求出,.由此能求出.【详解】解:等差数列的前项和为,,,,解得,..故选:.【点睛】本题考查等差数列第7项的值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.2、B【解析】

在①中,由,得到平面;在②中,由,得到平面;在③中,由,得到与平面相交但不垂直;在④中,由平面,得到平面平面,即可求解.【详解】由正方体中,可得:在①中,因为,平面,平面,∴平面,故①正确;在②中,∵,平面,平面,∴平面,故②错误;在③中,∵,∴与平面相交但不垂直,故③错误;在④中,∵平面,平面,∴平面平面,故④正确.故选:B.【点睛】本题主要考查了命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.3、A【解析】

作出两异面直线所成的角,然后由余弦定理求解.【详解】在正四棱柱中,则异面直线与所成角为或其补角,在中,,,.故选A.【点睛】本题考查异面直线所成的角,解题关键是根据定义作出异面直线所成的角,然后通过解三角形求之.4、D【解析】x-1-x-2=x-1-∵关于x的不等式x-1-∴a2+a-1>1,即解得a>1或∴实数a的取值范围为-∞,-2∪5、C【解析】∵=++=-8a-2b=2,与不平行,∴四边形ABCD为梯形.6、A【解析】

根据条件判断出为等差数列,利用等差数列的性质得到和之间的关系,得到答案.【详解】为等差数列【点睛】本题考查等差中项,等差数列的基本性质,属于简单题.7、A【解析】

根据正切函数的图象与性质逐一判断即可.【详解】.,由得,,的对称中心为,,故正确;.在定义域内不是增函数,故错误;.为非奇非偶函数,故错误;.的图象不是轴对称图形,故错误.故选.【点睛】本题考查了正切函数的图象与性质,考查了整体思想,意在考查学生对这些知识的理解掌握水平,属基础题.8、D【解析】

取的中点,连接,,连接,,由线面垂直的判定和性质可判断①;由三角形的中位线定理,以及线面平行的判定定理可判断②③④.【详解】解:取的中点,连接,,连接,,正方形和所在平面互相垂直,、分别是和的中点,可得,,平面,可得,故①正确;由为的中位线,可得,且平面,可得平面,故②③正确,④错误.故选:D.【点睛】本题主要考查空间线线和线面的位置关系,考查转化思想和数形结合思想,属于基础题.9、D【解析】

由已知直线方程求得直线的斜率,再根据两直线垂直,得到所求直线的斜率,最后用点斜式写出所求直线的方程.【详解】已知直线的斜率为:因为两直线垂直所以所求直线的斜率为又所求直线过点所以所求直线方程为:即:故选:D【点睛】本题主要考查了直线与直线的位置关系及直线方程的求法,还考查了运算求解的能力,属于基础题.10、C【解析】

对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

画出示意图,利用正弦定理求解即可.【详解】如图所示:为灯塔,为轮船,,则在中有:,且海里,则解得:海里.【点睛】本题考查解三角形的实际应用,难度较易.关键是能通过题意将航海问题的示意图画出,然后选用正余弦定理去分析问题.12、.【解析】分析:由,均为单位向量,它们的夹角为,求出数量积,先将平方,再开平方即可的结果.详解:∵,故答案为.点睛:平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).13、【解析】

利用同角三角函数计算出的值,利用三角形的面积公式和条件可求出、的值,再利用余弦定理求出的值.【详解】,,,且的面积是,,,,,由余弦定理得,.故答案为.【点睛】本题考查利用余弦定理解三角形,同时也考查了同角三角函数的基本关系、三角形面积公式的应用,考查运算求解能力,属于中等题.14、9【解析】

分析数列的单调性,以及数列各项的取值正负,得到数列中的最大项,由此即可求解出的值.【详解】因为,所以时,,时,,又因为在上递增,在也是递增的,所以,又因为对任意正整数都有,所以.故答案为:.【点睛】本题考查数列的单调性以及数列中项的正负判断,难度一般.处理数列单调性或者最值的问题时,可以采取函数的思想来解决问题,但是要注意到数列对应的函数的定义域为.15、-1【解析】

根据三角函数的定义求得,再代入的展开式进行求值.【详解】角终边过点,终边在第三象限,根据三角函数的定义知:,【点睛】考查三角函数的定义及三角恒等变换,在变换过程中要注意符号的正负.16、【解析】

观察式子特点可知,分子上两余弦的角的和是,分母上两个正弦的角的和是,据此规律即可写出式子【详解】观察式子规律可总结出一般规律:,可赋值,得故答案为:【点睛】本题考查归纳推理能力,能找出余角关系和补角关系是解题的关键,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),单调增区间为;(2)或;(3).【解析】试题分析:(Ⅰ)化简,解不等式求得的范围即得增区间(2)讨论a的正负,确定最大值,求a;(3)化简绝对值不等式,转化在上恒成立,即,求出在上的最大值,最小值即得解.试题解析:(1)∵∴∴单调增区间为(2)当时,若,,∴若,,∴∴综上,或.(3)在上恒成立,即在上恒成立,∴在上最大值2,最小值,∴∴的取值范围.点睛:本题考查了平面向量的数量积的应用,三角函数的单调性与最值,三角函数的化简,恒成立问题的处理及分类讨论的数学思想,综合性强.18、(1),;(2)见解析【解析】

(1)根据题意经过次技术更新后,通过整理得到,构造是等比数列,求出,得证;(2)由(1)可求出通项,令,通过相关计算即可求出n的最小值,从而得到答案.【详解】(1)由题意,可设5商用初期,该区域市场中采用H公司与G公司技术的智能终端产品的占比分别为.易知经过次技术更新后,则,①由①式,可设,对比①式可知.又.从而当时,是以为首项,为公比的等比数列.(2)由(1)可知,所以经过次技术更形后,该区域市场采用H公司技术的智能终端产品占比.由题意,令,得.故,即至少经过6次技术更新,该区域市场采用H公司技术的智能终端产品占比能达到75%以上.【点睛】本题主要考查数列的实际应用,等比数列的证明,数列与不等式的相关计算,综合性强,意在考查学生的阅读理解能力,转化能力,分析能力,计算能力,难度较大.19、(1)证明见解析;(2);(3).【解析】

(1)由,证得平面,再由线面平行的性质,即可得到;(2)取中点,连结,推得,,得到平面,再由多面体的体积,结合体积公式,即可求解;(3)由,设的中点为,连结,推得,从而得到就是二面角的平面角,由此可求得二面角的余弦值.【详解】证明:(1)因为平面平面,所以平面,又平面,平面平面,所以;(2)取中点,连结,由得,同理,又因为,所以平面,在中,,所以,所以多面体的体积;(3)由题意知,底面为边长2的菱形,,所以,又,所以,设的中点为,连结,由侧面是正三角形知,,所以,因此就是二面角的平面角,在中,,,由余弦定理得,二面角的余弦值为.【点睛】本题主要考查了线面位置关系的判定,多面体的体积的计算,以及二面角的求解,其中解答中熟记线面位置关系的判定与性质,以及而面积的平面角的定义,准确计算是解答的关键,着重考查了推理与论证能力,属于中档试题.20、(1)48;(2)30;(3)【解析】

(1)设样本容量为,列方程求解即可;(2)根据比例列式求解即可;(3)根据比例得成绩在90.5分以上的同学有6人,抽取2人参加决赛,列举出总的基本事件个数,然后列举出最高分甲被抽到的基本事件个数,根据概率公式可得结果.【详解】解:(1)设样本容量为,则,解得,所以样本的容量是48;(2)样本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论