




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省江阴市普通高中2024年高一数学第二学期期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若各项为正数的等差数列的前n项和为,且,则()A.9 B.14 C.7 D.182.为了得到函数y=sin(2x-πA.向右平移π6个单位 B.向右平移πC.向左平移π6个单位 D.向左平移π3.函数的最小值为(
)A.6 B.7 C.8 D.94.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位5.已知三角形ABC,如果,则该三角形形状为()A.锐角三角形 B.钝角三角形 C.直角三角形 D.以上选项均有可能6.如图是某几何体的三视图,则该几何体的表面积为()A. B. C. D.7.直线的倾斜角为()A. B. C. D.8.已知向量,,则与夹角的大小为()A. B. C. D.9.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为()A.4 B.2 C.85 D.1210.如图所示:在正方体中,设直线与平面所成角为,二面角的大小为,则为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.程的解为______.12.已知直线与圆相交于,两点,则=______.13.若,方程的解为______.14.直线与圆交于两点,若为等边三角形,则______.15.长时间的低头,对人的身体如颈椎、眼睛等会造成定的损害,为了了解某群体中“低头族”的比例,现从该群体包含老、中、青三个年龄段的人中采用分层抽样的方法抽取人进行调查,已知这人里老、中、青三个年龄段的分配比例如图所示,则这个群体里青年人人数为_____16.已知原点O(0,0),则点O到直线x+y+2=0的距离等于.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列的各项均为正数,对任意,它的前项和满足,并且,,成等比数列.(1)求数列的通项公式;(2)设,为数列的前项和,求.18.求过点且与圆相切的直线方程.19.已知:(,为常数).(1)若,求的最小正周期;(2)若在,上最大值与最小值之和为3,求的值.20.在中,角的对边分别为,且.(1)求角的大小;(2)若,求的最大值.21.己知点,直线l与圆C:(x一1)2+(y一2)2=4相交于A,B两点,且OA⊥OB.(1)若直线OA的方程为y=一3x,求直线OB被圆C截得的弦长;(2)若直线l过点(0,2),求l的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据等差中项定义及条件式,先求得.再由等差数列的求和公式,即可求得的值.【详解】数列为各项是正数的等差数列则由等差中项可知所以原式可化为,所以由等差数列求和公式可得故选:B【点睛】本题考查了等差中项的性质,等差数列前n项和的性质及应用,属于基础题.2、A【解析】
根据函数平移变换的方法,由2x→2x-π3即2x→2(x-π【详解】根据函数平移变换,由y=sin2x变换为只需将y=sin2x的图象向右平移π6【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.3、C【解析】
直接利用均值不等式得到答案.【详解】,时等号成立.故答案选C【点睛】本题考查了均值不等式,属于简单题.4、D【解析】
根据三角函数图象的平移变换可直接得到图象变换的过程.【详解】因为,所以向右平移个单位即可得到的图象.故选:D.【点睛】本题考查三角函数图象的平移变换,难度较易.注意左右平移时对应的规律:左加右减.5、B【解析】
由正弦定理化简已知可得:,由余弦定理可得,可得为钝角,即三角形的形状为钝角三角形.【详解】由正弦定理,,可得,化简得,由余弦定理可得:,又,为钝角,即三角形为钝角三角形.故选:B.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.6、C【解析】
根据三视图还原直观图,根据长度关系计算表面积得到答案.【详解】根据三视图还原直观图,如图所示:几何体的表面积为:故答案选C【点睛】本题考查了三视图,将三视图转化为直观图是解题的关键.7、C【解析】
求出直线的斜率,然后求解直线的倾斜角.【详解】由题意知,直线的斜率为,所以直线的倾斜角为.故选:C.【点睛】本题考查直线的斜率与倾斜角的求法,属于基础题.8、D【解析】
根据向量,的坐标及向量夹角公式,即可求出,从而根据向量夹角的范围即可求出夹角.【详解】向量,,则;∴;∵0≤<a,b>≤π;∴<a,b>=.故选:D.【点睛】本题考查数量积表示两个向量的夹角,已知向量坐标代入夹角公式即可求解,属于常考题型,属于简单题.9、A【解析】设l:ax-3y+m=0∴-2a-12+m=0∴ax-3y+2a+12=0因此|2a-3+2a+12|a2+32=5∴a=4,因此直线10、A【解析】
连结BC1,交B1C于O,连结A1O,则∠BA1O是直线A1B与平面A1DCB1所成角θ1,由BC⊥DC,B1C⊥DC,知∠BCB1是二面角A1﹣DC﹣A的大小θ2,由此能求出结果.【详解】连结BC1,交B1C于O,连结A1O,∵在正方体ABCD﹣A1B1C1D1中,BC1⊥B1C,BC1⊥DC,∴BO⊥平面A1DCB1,∴∠BA1O是直线A1B与平面A1DCB1所成角θ1,∵BO=A1B,∴θ1=30°;∵BC⊥DC,B1C⊥DC,∴∠BCB1是二面角A1﹣DC﹣A的大小θ2,∵BB1=BC,且BB1⊥BC,∴θ2=45°.故选A.【点睛】本题考查线面角、二面角的求法,解题时要认真审题,注意空间思维能力的培养,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设,即求二次方程的正实数根,即可解决问题.【详解】设,即转化为求方程的正实数根由得或(舍)所以,则故答案为:【点睛】本题考查指数型二次方程,考查换元法,属于基础题.12、.【解析】
将圆的方程化为标准方程,由点到直线距离公式求得弦心距,再结合垂径定理即可求得.【详解】圆,变形可得所以圆心坐标为,半径直线,变形可得由点到直线距离公式可得弦心距为由垂径定理可知故答案为:【点睛】本题考查了直线与圆相交时的弦长求法,点到直线距离公式的应用及垂径定理的用法,属于基础题.13、【解析】
运用指数方程的解法,结合指数函数的值域,可得所求解.【详解】由,即,因,解得,即.故答案:.【点睛】本题考查指数方程的解法,以及指数函数的值域,考查运算能力,属于基础题.14、或【解析】
根据题意可得圆心到直线的距离为,根据点到直线的距离公式列方程解出即可.【详解】圆,即,圆的圆心为,半径为,∵直线与圆交于两点且为等边三角形,∴,故圆心到直线的距离为,即,解得或,故答案为或.【点睛】本题主要考查了直线和圆相交的弦长公式,以及点到直线的距离公式,考查运算能力,属于中档题.15、【解析】
根据饼状图得到青年人的分配比例;利用总数乘以比例即可得到青年人的人数.【详解】由饼状图可知青年人的分配比例为:这个群体里青年人的人数为:人本题正确结果:【点睛】本题考查分层抽样知识的应用,属于基础题.16、【解析】
由点到直线的距离公式得:点O到直线x+y+2=0的距离等于,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
(1)根据与的关系,利用临差法得到,知公差为3;再由代入递推关系求;(2)观察数列的通项公式,相邻两项的和有规律,故采用并项求和法,求其前项和.【详解】(1)对任意,有,①当时,有,解得或.当时,有.②①-②并整理得.而数列的各项均为正数,.当时,,此时成立;当时,,此时,不成立,舍去.,.(2).【点睛】已知与的递推关系,利用临差法求时,要注意对下标与分两种情况,即;数列求和时要先观察通项特点,再决定采用什么方法.18、直线方程为或【解析】
当直线的斜率不存在时,直线方程为,满足题意,当直线的斜率存在时,设出直线的方程,由圆心到直线的距离等于半径,可解出的值,从而求出方程。【详解】当直线的斜率不存在时,直线方程为,经检验,满足题意.当直线的斜率存在时,设直线方程为,即,圆心到直线的距离等于半径,即,可解得.即直线为.综上,所求直线方程为或.【点睛】本题考查了圆的切线的求法,考查了直线的方程,考查了点到直线的距离公式,属于基础题。19、(1);(2)1【解析】
(1)利用二倍角和辅助角公式化简,即可求出最小正周期;(2)根据在,上,求解内层函数范围,即可求解最值,由最大值与最小值之和为3,求的值.【详解】解:,(1)的最小正周期;(2),,当时,即,取得最小值为,当时,即,取得最大值为,最大值与最小值之和为3,,,故的值为1.【点睛】本题主要考查三角函数的性质和图象的应用,属于基础题.20、(1).(2)【解析】
(1)先利用正弦定理角化边,然后根据余弦定理求角;(2)利用余弦定理以及基本不等式求解最值,注意取等号的条件.【详解】解:(1)由正弦定理得,由余弦定理得,∴.又∵,∴.(2)由余弦定理得,即,化简得,,即,当且仅当时,取等号.∴.【点睛】在三角形中,已知一角及其对边,求解周长或者面积的最值的方法:未给定三角形形状时,直接利用余弦定理和基本不等式求解最值;给定三角形形状时,先求解角的范围,然后根据正弦定理进行转化求解.21、(1);(2).【解析】
(1)根据题意,求得直线OB的方程,利用点到直线的距离公式求得圆心到直线OB的距离,之后应用圆中的特殊三角形,求得弦长;(2)根据题意,可判断直线的斜率是存在的,设出其方程,与圆的方程联立,得到两根和与两根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论