版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省株洲市攸县第四中学2025届高一下数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,既是偶函数又在(0,+∞)上是单调递减的是()A.y=-cosx B.y=lgx2.设集合,集合为函数的定义域,则()A. B. C. D.3.已知三棱锥O-ABC,侧棱OA,OB,OC两两垂直,且OA=OB=OC=2,则以O为球心且1为半径的球与三棱锥O-ABC重叠部分的体积是()A.π8 B.π6 C.π4.如图是一个射击靶的示意图,其中每个圆环的宽度与中心圆的半径相等.某人朝靶上任意射击一次没有脱靶,则其命中深色部分的概率为()A. B. C. D.5.已知函数,若方程在上有且只有三个实数根,则实数的取值范围为()A. B. C. D.6.设是等比数列,有下列四个命题:①是等比数列;②是等比数列;③是等比数列;④是等差数列.其中正确命题的个数是()A. B. C. D.7.某同学5天上学途中所花的时间(单位:分钟)分别为12,8,10,9,11,则这组数据的方差为()A.4 B.2 C.9 D.38.如图,给出的是的值的一个程序框图,判断框内应填入的条件是()A. B. C. D.9.函数在区间(,)内的图象是()A. B. C. D.10.已知是公差不为零的等差数列,其前项和为,若成等比数列,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为等差数列,,,,则______.12.已知向量,,且,则_______.13.在等比数列中,,的值为______.14.如图,在圆心角为,半径为2的扇形AOB中任取一点P,则的概率为________.15.直线与圆的位置关系是______.16.方程的解集是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列为等差数列,,,数列为等比数列,,公比.(1)求数列、的通项公式;(2)求数列的前n项和.18.某机构通过对某企业今年的生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:14712229244241196(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述与的变化关系,并说明理由,,,;(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.19.已知是同一平面内的三个向量,;(1)若,且,求的坐标;(2)若,且与垂直,求与的夹角.20.设数列为等比数列,且,,(1)求数列的通项公式:(2)设,数列的前项和,求证:.21.在中,角A,B,C的对边分别为a,b,c,,且.(1)求A;(2)求面积的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
先判断各函数奇偶性,再找单调性符合题意的即可。【详解】首先可以判断选项D,y=e然后,由图像可知,y=-cosx在(0,+∞)上不单调,y=lg只有选项C:y=1-x【点睛】本题主要考查函数的性质,奇偶性和单调性。2、B【解析】
解不等式化简集合的表示,求出函数的定义域,表示成集合的形式,运用集合的并集运算法则,结合数轴求出.【详解】因为,所以.又因为函数的定义域为,所以.因此,故本题选B.【点睛】本题考查了集合的并集运算,正确求出对数型函数的定义域,运用数轴是解题的关键.3、B【解析】
根据三棱锥三条侧棱的关系,得到球与三棱锥的重叠部分为球的18【详解】∵三棱锥O-ABC,侧棱OA,OB,OC两两互相垂直,且OA=OB=OC=2,以O为球心且1为半径的球与三棱锥O-ABC重叠部分的为球的18即对应的体积为18【点睛】本题主要考查球体体积公式的应用,解题的关键就是利用三棱锥与球的关系,考查空间想象能力,属于中等题。4、D【解析】
分别求出大圆面积和深色部分面积即可得解.【详解】设中心圆的半径为,所以中心圆的面积为,8环面积为,射击靶的面积为,所以命中深色部分的概率为.故选:D【点睛】此题考查几何概型,属于面积型,关键在于准确求解面积,根据圆环特征分别求出面积即可得解.5、A【解析】
先辅助角公式化简,先求解方程的根的表达式,再根据在上有且只有三个实数根列出对应的不等式求解即可.【详解】.又在上有且只有三个实数根,故,解得或,即或,.设直线与在上从做到右的第三个交点为,第四个交点为.则,.故.故实数的取值范围为.故选:A【点睛】本题主要考查了根据三角函数的根求解参数范围的问题,需要根据题意先求解根的解析式,进而根据区间中的零点个数列出区间端点满足的关系式求解即可.属于中档题.6、C【解析】
设,得到,,,再利用举反例的方式排除③【详解】设,则:,故是首项为,公比为的等比数列,①正确,故是首项为,公比为的等比数列,②正确取,则,不是等比数列,③错误.,故是首项为,公差为的等差数列,④正确故选:C【点睛】本题考查了等差数列,等比数列的判断,找出反例可以快速的排除选项,简化运算,是解题的关键.7、B【解析】
先求平均值,再结合方差公式求解即可.【详解】解:由题意可得,由方差公式可得:,故选:B.【点睛】本题考查了样本数据的方差,属基础题.8、B【解析】试题分析:由题意得,执行上式的循环结构,第一次循环:;第二次循环:;第三次循环:;,第次循环:,此时终止循环,输出结果,所以判断框中,添加,故选B.考点:程序框图.9、D【解析】解:函数y=tanx+sinx-|tanx-sinx|=分段画出函数图象如D图示,故选D.10、B【解析】∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
由等差数列的前项和公式,代入计算即可.【详解】已知为等差数列,且,,所以,解得或(舍)故答案为【点睛】本题考查了等差数列前项和公式的应用,属于基础题.12、-2或3【解析】
用坐标表示向量,然后根据垂直关系得到坐标运算关系,求出结果.【详解】由题意得:或本题正确结果:或【点睛】本题考查向量垂直的坐标表示,属于基础题.13、【解析】
由等比中项,结合得,化简即可.【详解】由等比中项得,得,设等比数列的公比为,化简.故答案为:4【点睛】本题考查了等比中项的性质,通项公式的应用,属于基础题.14、【解析】
根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设,由数量积的计算公式可得满足的区域,求出其面积,代入几何概率的计算公式即可求解.【详解】根据题意,建立如图的坐标系,则则扇形的面积为设若,则有,即;则满足的区域为如图的阴影区域,直线与弧的交点为,易得的坐标为,则阴影区域的面积为故的概率故答案为:【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.15、相交【解析】
由直线系方程可得直线过定点,进而可得点在圆内部,即可得到位置关系.【详解】化直线方程为,令,解得,所以直线过定点,又圆的圆心坐标为,半径,而,所以点在圆内部,故直线与圆的位置关系是相交.故答案为:相交.【点睛】本题考查直线与圆位置关系的判断,考查直线系方程的应用,属于基础题.16、【解析】
令,,将原方程化为关于的一元二次方程,解出得到,进而得出方程的解集.【详解】令,,故原方程可化为,解得或,故而或,即方程的解集是,故答案为.【点睛】本题主要考查了指数方程的解法,转化为一元二次方程是解题的关键,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),.(2)【解析】
(1)先求出等差数列的首项和公差,求出等比数列的首项即得数列、的通项公式;(2)利用分组求和求数列的前n项和.【详解】(1)由题得.由题得.(2)由题得,所以数列的前n项和.【点睛】本题主要考查等差等比数列的通项的基本量的计算,考查数列通项的求法和求和,意在考查学生对这些知识的理解掌握水平.18、(1),理由见解析;(2)第5个月,利润最大为245.【解析】
(1)根据题中数据,即可直接判断出结果;(2)将题中,代入,求出参数,根据二次函数的性质,以及自变量的范围,即可得出结果.【详解】(1)由题目中的数据知,描述每月利润(单位:万元)与相应月份数的变化关系函数不可能是常数函数,也不是单调函数;所以,应选取二次函数进行描述;(2)将,代入,解得,,∴,,,,∴,万元.【点睛】本题主要考查二次函数的应用,熟记二次函数的性质即可,属于常考题型.19、(1)或;(2).【解析】
(1)设向量,根据和得到关于的方程组,从而得到答案;(2)根据与垂直,得到的值,根据向量夹角公式得到的值,从而得到的值.【详解】(1)设向量,因为,,,所以,解得,或所以或;(2)因为与垂直,所以,所以而,,所以,得,与的夹角为,所以,因为,所以.【点睛】本题考查根据向量的平行求向量的坐标,根据向量的垂直关系求向量的夹角,属于简单题.20、(1)(2)详见解析【解析】
(1)将已知条件转化为等比数列的基本量和,得到的值,从而得到数列的通项;(2)根据题意写出,然后得到数列的通项,利用列项相消法进行求和,得到其前项和,然后进行证明.【详解】设等比数列的首项为,公比为,因为,所以,所以所以;(2),所以,所以.因为,所以.【点睛】本题考查等比数列的基本量计算,裂项相消法求数列的和,属于简单题.21、(1);(2)【解析】
(1)由题目条件a=1,可以将(1+b)(sinA-sinB)=(c-b)sinC中的1换成a,达到齐次化的目的,再用正余弦定理解决;(2)已知∠A,要求△ABC的面积,可用公式,因此把问题转化为求bc的最大
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孤残儿童关爱政策宣传与普及考核试卷
- 企业安全生产培训的技术创新与成果转化考核试卷
- 家用纺织品消费趋势考核试卷
- 包装用纤维素材料的抗湿性能和抗菌效果研究考核试卷
- 苏州科技大学天平学院《化工环保与安全》2023-2024学年第一学期期末试卷
- 鼻部美容手术-鼻部手术应用解剖及麻醉方法(美容外科学课件)
- 体育馆设施的数字化展示与交互考核试卷
- Secologanin-Standard-生命科学试剂-MCE
- 糖尿病药物指导
- 苏州科技大学天平学院《道路与桥梁工程概论》2022-2023学年第一学期期末试卷
- GB/T 44540-2024精细陶瓷陶瓷管材或环材弹性模量和弯曲强度的测定缺口环法
- 道路交通安全法律法规
- 2024年新北师大版数学一年级上册 第4单元 10以内数加与减 第9课时 可爱的企鹅 教学课件
- 外研版(2019) 选择性必修第四册 Unit 5 Into the Unknown Understanding ideas教案
- 中班健康课件《认识五官》
- 2024~2025学年度八年级数学上册第1课时 等边三角形的性质和判定教学设计
- 江西九江富和建设投资集团有限公司招聘笔试题库2024
- 2024-2030年中国BPO行业发展分析及发展前景与趋势预测研究报告
- 文明礼仪伴我行文明礼仪从我做起课件
- 人教版八上 2.2我的未来不是梦 教案
- 光伏消防演练方案及流程
评论
0/150
提交评论