版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省白城市第十四中学2025届数学高一下期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.延长正方形的边至,使得.若动点从点出发,沿正方形的边按逆时针方向运动一周回到点,若,下列判断正确的是()A.满足的点必为的中点B.满足的点有且只有一个C.的最小值不存在D.的最大值为2.已知直线x+ay+4=0与直线ax+4y-3=0互相平行,则实数a的值为()A.±2 B.2 C.-2 D.03.己知x与y之间的几组数据如下表:x0134y1469则y与x的线性回归直线y=A.(2,5) B.(5,9) C.(0,1) D.(1,4)4.直线,,的斜率分别为,,,如图所示,则()A. B.C. D.5.已知一直线经过两点,,且倾斜角为,则的值为()A.-6 B.-4 C.2 D.66.已知圆C的半径为2,在圆内随机取一点P,并以P为中点作弦AB,则弦长的概率为A. B. C. D.7.已知点是抛物线:的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰好在以,为焦点的双曲线上,则双曲线的离心率为()A. B. C. D.8.设直线系.下列四个命题中不正确的是()A.存在一个圆与所有直线相交B.存在一个圆与所有直线不相交C.存在一个圆与所有直线相切D.M中的直线所能围成的正三角形面积都相等9.函数f(x)=sin(ωx+π4)(ω>0)的图象在[0,πA.(1,5) B.(1,+∞) C.[10.“”是“、、”成等比数列的()条件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要二、填空题:本大题共6小题,每小题5分,共30分。11.和2的等差中项的值是______.12.给出下列语句:①若为正实数,,则;②若为正实数,,则;③若,则;④当时,的最小值为,其中结论正确的是___________.13.对于任意x>0,不等式3x2-2mx+12>014.已知为直线上一点,过作圆的切线,则切线长最短时的切线方程为__________.15.现用一半径为,面积为的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________.16.已知当时,函数(且)取得最大值,则时,的值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)请确定3998是否是数列中的项?18.在平面直角坐标系中,为坐标原点,三点满足.(1)求证:三点共线;(2)已知的最小值为,求实数的值.19.已知,且.(1)求的值;(2)求的值.20.从某居民区随机抽取10个家庭,获得第个家庭的月收入(单位:千元)与月储蓄,(单位:千元)的数据资料,算出,附:线性回归方程,其中为样本平均值.(1)求家庭的月储蓄对月收入的线性回归方程;(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.21.如图,四棱锥的底面为平行四边形,为中点.(1)求证:平面;(2)求证:平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】试题分析:设正方形的边长为1,建立如图所示直角坐标系,则的坐标为,则设,由得,所以,当在线段上时,,此时,此时,所以;当在线段上时,,此时,此时,所以;当在线段上时,,此时,此时,所以;当在线段上时,,此时,此时,所以;由以上讨论可知,当时,可为的中点,也可以是点,所以A错;使的点有两个,分别为点与中点,所以B错,当运动到点时,有最小值,故C错,当运动到点时,有最大值,所以D正确,故选D.考点:向量的坐标运算.【名师点睛】本题考查平面向量线性运算,属中档题.平面向量是高考的必考内容,向量坐标化是联系图形与代数运算的渠道,通过构建直角坐标系,使得向量运算完全代数化,通过加、减、数乘的运算法则,实现了数形的紧密结合,同时将参数的取值范围问题转化为求目标函数的取值范围问题,在解题过程中,还常利用向量相等则坐标相同这一原则,通过列方程(组)求解,体现方程思想的应用.2、A【解析】
根据两直线平性的必要条件可得4-a【详解】∵直线x+ay+4=0与直线ax+4y-3=0互相平行;∴4×1-a⋅a=0,即4-a2=0当a=2时,直线分别为x+2y+4=0和2x+4y-3=0,平行,满足条件当a=-2时,直线分别为x-2y+4=0和-2x+4y-3=0,平行,满足条件;所以a=±2;故答案选A【点睛】本题考查两直线平行的性质,解题时注意平行不包括重合的情况,属于基础题。3、A【解析】
分别求出x,y均值即得.【详解】x=0+1+3+44=2,故选A.【点睛】本题考查线性回归直线方程,线性回归直线一定过点(x4、A【解析】
根据题意可得出直线,,的倾斜角满足,由倾斜角与斜率的关系得出结果.【详解】解:设三条直线的倾斜角为,根据三条直线的图形可得,因为,当时,,当时,单调递增,且,故,即故选A.【点睛】本题考查了直线的倾斜角与斜率的关系,解题的关键是熟悉正切函数的单调性.5、C【解析】
根据倾斜角为得到斜率,再根据两点斜率公式计算得到答案.【详解】一直线经过两点,,则直线的斜率为.直线的倾斜角为∴,即.故答案选C.【点睛】本题考查了直线的斜率,意在考查学生的计算能力.6、B【解析】
先求出临界状态时点P的位置,若,则点P与点C的距离必须大于或等于临界状态时与点C的距离,再根据几何概型的概率计算公式求解.【详解】如图所示:当时,此时,若,则点P必须位于以点C为圆心,半径为1和半径为2的圆环内,所以弦长的概率为:.故选B.【点睛】本题主要考查几何概型与圆的垂径定理,此类题型首先要求出临界状态时的情况,再判断满足条件的区域.7、C【解析】由题意,得,设过的抛物线的切线方程为,联立,,令,解得,即,不妨设,由双曲线的定义得,,则该双曲线的离心率为.故选C.8、D【解析】
对于含变量的直线问题可采用赋特殊值法进行求解【详解】因为所以点到中每条直线的距离即为圆的全体切线组成的集合,所以存在圆心在,半径大于1的圆与中所有直线相交,A正确也存在圆心在,半径小于1的圆与中所有直线均不相交,B正确也存在圆心在半径等于1的圆与中所有直线相切,C正确故正确因为中的直线与以为圆心,半径为1的圆相切,所以中的直线所能围成的正三角形面积不都相等,如图
与
均为等边三角形而面积不等,故错误,答案选D.【点睛】本题从点到直线的距离关系出发,考查了圆的切线与圆的位置关系,解决此类题型应学会将条件进行有效转化.9、C【解析】
结合正弦函数的基本性质,抓住只有一条对称轴,建立不等式,计算范围,即可.【详解】当x=π4时,wx+π4=π4w+π4,当【点睛】考查了正弦函数的基本性质,关键抓住只有一条对称轴,建立不等式,计算范围,即可.10、B【解析】
利用充分必要条件直接推理即可【详解】若“、、”成等比数列,则;成立反之,若“”,如果a=b=G=0则、、”不成等比数列,故选B.【点睛】本题考查充分必要条件的判定,熟记等比数列的性质是关键,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据等差中项性质求解即可【详解】设等差中项为,则,解得故答案为:【点睛】本题考查等差中项的求解,属于基础题12、①③.【解析】
利用作差法可判断出①正确;通过反例可排除②;根据不等式的性质可知③正确;根据的范围可求得的范围,根据对号函数图象可知④错误.【详解】①,为正实数,,即,可知①正确;②若,,,则,可知②错误;③若,可知,则,即,可知③正确;④当时,,由对号函数图象可知:,可知④错误.本题正确结果:①③【点睛】本题考查不等式性质的应用、作差法比较大小问题、利用对号函数求解最值的问题,属于常规题型.13、(-∞,6)【解析】
先参变分离转化为对应函数最值问题,再通过求函数最值得结果.【详解】因为3x2-2mx+12>0,所以m<3x2+【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14、或【解析】
利用切线长最短时,取最小值找点:即过圆心作直线的垂线,求出垂足点.就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程.【详解】设切线长为,则,所以当切线长取最小值时,取最小值,过圆心作直线的垂线,则点为垂足点,此时,直线的方程为,联立,得,点的坐标为.①若切线的斜率不存在,此时切线的方程为,圆心到该直线的距离为,合乎题意;②若切线的斜率存在,设切线的方程为,即.由题意可得,化简得,解得,此时,所求切线的方程为,即.综上所述,所求切线方程为或,故答案为或.【点睛】本题考查过点的圆的切线方程的求解,考查圆的切线长相关问题,在过点引圆的切线问题时,要对直线的斜率是否存在进行分类讨论,另外就是将直线与圆相切转化为圆心到直线的距离等于半径长,考查分析问题与解决问题的能力,属于中等题.15、【解析】分析:由圆锥的几何特征,现用一半径为,面积为的扇形铁皮制作一个无盖的圆锥形容器,则圆锥的底面周长等于扇形的弧长,圆锥的母线长等于扇形的半径,由此计算出圆锥的高,代入圆锥体积公式,即可求出答案.解析:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器的高和底面半径分别为h、r,则由题意得R=10,由,得,由得.由可得.该容器的容积为.故答案为.点睛:涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.16、3【解析】
先将函数的解析式利用降幂公式化为,再利用辅助角公式化为,其中,由题意可知与的关系,结合诱导公式以及求出的值.【详解】,其中,当时,函数取得最大值,则,,所以,,解得,故答案为.【点睛】本题考查三角函数最值,解题时首先应该利用降幂公式、和差角公式进行化简,再利用辅助角公式化简为的形式,本题中用到了与之间的关系,结合诱导公式进行求解,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)第1000项【解析】
(1)由题意有,解方程组即得数列的通项公式;(2)假设3998是数列中的项,有,得,即可判断得解.【详解】解:(1)设数列的公差为,由题意有,解得,则数列的通项公式为.(2)假设3998是数列中的项,有,得,故3998是数列中的第1000项.【点睛】本题主要考查等差数列基本量的计算,考查某一项是否是等差数列中的项的判定,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)证明过程见解析;(2)【解析】试题分析:(1)只需证得即可。(2)由题意可求得的解析式,利用换元法转换成,讨论的单调性,可知其在上为单调减函数,得可解得的值。(1)证明:三点共线.(2),,令,其对称轴方程为在上是减函数,。点睛:证明三点共线的方法有两种:一、求出其中两点所在直线方程,验证第三点满足直线方程即可;二、任取两点构造两个向量,证明两向量共线即可。在考试中经常采用第二种方法,便于计算。证明四点共线一般采用第一种方法。19、(1)(2)【解析】
(1)由即可求得;(2)可由的差角公式进行求解【详解】(1)由题可知,,,(2),又由前式可判断,,,故,【点睛】本题考查三角函数的计算,二倍角公式的使用,两角差公式的使用,易错点为忽略具体的角度范围,属于中档题20、(1);(2)1.7【解析】
(1)根据数据,利用最小二乘法,即可求得y对月收入x的线性回归方程回归方程x;(2)将x=7代入即可预测该家庭的月储蓄.【详解】(1)由题意知,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 孤残儿童关爱政策宣传与普及考核试卷
- 企业安全生产培训的技术创新与成果转化考核试卷
- 家用纺织品消费趋势考核试卷
- 包装用纤维素材料的抗湿性能和抗菌效果研究考核试卷
- 苏州科技大学天平学院《化工环保与安全》2023-2024学年第一学期期末试卷
- 鼻部美容手术-鼻部手术应用解剖及麻醉方法(美容外科学课件)
- 体育馆设施的数字化展示与交互考核试卷
- 淘宝客服的工作总结(30篇)
- 幼儿园小班日工作总结5篇
- Secologanin-Standard-生命科学试剂-MCE
- 手术体位相关周围神经损伤及预防课件
- 2024人教版初中英语单词词汇表默写背诵(中考复习必背)
- 数字媒体技术专业大学生职业生涯规划书
- 【精】人民音乐出版社人音版五年级上册音乐《外婆的澎湖湾》课件PPT
- 抗肿瘤药物临床合理应用(临床)
- 弱电维护保养方案
- 安全施工管理组织机构图
- 中国数据中心产业发展白皮书(2023年)
- 《建筑企业财务 》课件
- 沪科版九年级物理全一册知识点总结(沪教版)
- 飞轮储能在电网调频中的工程应用
评论
0/150
提交评论