国考行测数量关系真题含答案(预热题)_第1页
国考行测数量关系真题含答案(预热题)_第2页
国考行测数量关系真题含答案(预热题)_第3页
国考行测数量关系真题含答案(预热题)_第4页
国考行测数量关系真题含答案(预热题)_第5页
已阅读5页,还剩65页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

国考行测数量关系真题第一部分单选题(200题)1、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。2、某农场有36台收割机,要收割完所有的麦子需要14天时间。现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升,问收割完所有的麦子还需要几天。

A.3

B.4

C.5

D.6

【答案】:答案:D

解析:方法一:赋值法,赋值每台收割机每天的工作效率为1,则工作总量为36×14,剩下的36×7由36+4=40台收割机完成,技术改造后每台收割机效率为,故剩下需要的时间为。方法二:比例法。由题意,原有收割机36台,增加4台后变为40台,提高效率5%后相当于原先40×(1+5%)=42台收割机的工作效率。效率比为6∶7,故所有时间比为7∶6,还需6天即可完成。故正确答案为D。3、2,3,1,2,6,7,()

A、9

B、5

C、11

D、24

【答案】:答案:B

解析:依次将相隔两项做和2+1=3、3+2=5、1+6=7、2+7=9,是公差为2的等差数列。即所填数字为(9+2)-6=5。故选B。4、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。5、某出版社新招了10名英文、法文和日文方向的外文编辑,其中既会英文又会日文的小李是唯一掌握一种以上外语的人。在这10人中,会法文的比会英文的多4人,是会日文人数的两倍。问只会英文的有几人?()

A、2

B、0

C、3

D、1

【答案】:答案:D

解析:设会日文的有x人,则会法文的有2x人,会英文的有(2x-4)人,由于小李既会英文也会日文,被统计两次,故10人统计了11人次。根据人次总数,得方程11=x+2x+2x-4,解得x=3,则会英文的人为2x-4=2(人),因小李既会英文又会日文,所以只会英文的只有2-1=1(人),故选D。6、3,11,13,29,31,()

A、52

B、53

C、54

D、55

【答案】:答案:D

解析:奇偶项分别相差11-3=8,29-13=16=8×2,问号-31=24=8×3则可得?=55。故选D。7、9,20,42,86,(),350

A、172

B、174

C、180

D、182

【答案】:答案:B

解析:20=9×2+2,42=20×2+2,86=42×2+2,第一项×2+2=第二项,即所填数字为86×2+2=174。故选B。8、226,264,316,388,()

A、236

B、386

C、486

D、566

【答案】:答案:C

解析:226=225+1=152+13,264=256+8=162+23,316=289+27=172+33,388=324+64=182+43,由此可以推知下一项应为192+53=486。故选C。9、12,23,35,47,511,()

A、613

B、612

C、611

D、610

【答案】:答案:A

解析:数位数列,各项首位数字“1,2,3,4,5,(6)”构成等差数列,其余数字“2,3,5,7,11,(13)”构成质数数列。因此,未知项为613。故选A。10、7,9,-1,5,()

A、3

B、-3

C、2

D、-2

【答案】:答案:B

解析:第三项=(第一项-第二项)/2=>-1=(7-9)/25=(9-(-1))/2-3=(-1-5)/2。故选B。11、依法纳税是公民的义务,按规定,全月工资薪金所得不超过800元的部分不必纳税,超过800元的部分,按下列分段累进计算税款,某人5月份应交纳此项税款26.78元,则他的当月工资薪金所得介于()。

A、800~900

B、900~1200

C、1200~1500

D、1500~2800

【答案】:答案:C

解析:根据表格:工资中800~1300的部分,需纳税500×5%=25(元);还剩税款26.78-25=1.78(元),即在1300元以上的部分为(元),则他当月工资薪金为1300+17.8=1317.8(元)。故选C。12、8,16,22,24,()

A、18

B、22

C、26

D、28

【答案】:答案:A

解析:8×2-0=16,16×2-10=22,22×2-20=24,前一项×2-修正项=后一项。即所填数字为24×2-30=18。故选A。13、2,11,32,()

A、56

B、42

C、71

D、134

【答案】:答案:C

解析:观察题干数列可得:2=13+1,11=23+3,32=33+5,()=43+7。故括号处应为71。故选C。14、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。15、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。16、将所有由1、2、3、4组成且没有重复数字的四位数,按从小到大的顺序排列,则排在第12位的四位数是()。

A、3124

B、2341

C、2431

D、3142

【答案】:答案:C

解析:当千位数字是1时有=6种四位数,当千位数字是2时也有=6种四位数,因此排在第12位的就是千位数字为2的最大四位数,即2431。故选C。17、2,3,6,15,()

A、25

B、36

C、42

D、64

【答案】:答案:C

解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故选C。18、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20米,这只青蛙爬出井口至少需要多少天?()

A、2

B、3

C、4

D、5

【答案】:答案:C

解析:第一天青蛙爬了10-6=4米,距离井口20-4=16米;第二天爬了4+(10-6)=8米,距离井口20-8=12米;第三天爬了8+(10-6)=12米,距离井口20-12=8米<10米;第四天青蛙可以直接爬出井口。这只青蛙爬出井口至少要4天。故选C。19、商店购入一百多件A款服装,其单件进价为整数元,总进价为1万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A款服装?()

A、13

B、15

C、17

D、19

【答案】:答案:C

解析:推出A款服装有125件,进价为80元,B款服装进价为80×0.75=60(元),B款服装定价为60×1.6=96(元),利润为96-60=36(元),A款服装利润为36×2=72(元),所以A款服装售价为80+72=152(元)。销售数量至少为2500÷152=16.4,取整为17件。故选C。20、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]

A、30

B、32

C、34

D、36

【答案】:答案:A

解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故选A。21、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。22、0,6,24,60,()

A、70

B、80

C、100

D、120

【答案】:答案:D

解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故选D。23、30,42,56,72,()

A、86

B、60

C、90

D、94

【答案】:答案:C

解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。24、某商店花10000元进了一批商品,按期望获得相当于进价25%的利润来定价。结果只销售了商品总量的30%。为尽快完成资金周转,商店决定打折销售,这样卖完全部商品后,亏本1000元。问商店是按定价打几折销售的?()

A、九折

B、七五折

C、六折

D、四八折

【答案】:答案:C

解析:由只销售了总量的30%知,打折前销售额为10000×(1+25%)×30%=3750元;设此商品打x折出售,剩余商品打折后,销售额为10000×(1+25%)×(1-30%)x=8750x。根据亏本1000元,可得3750+8750x-10000=﹣1000,解得x=0.6,即打六折。故选C。25、6,21,43,72,()

A、84

B、96

C、108

D、112

【答案】:答案:C

解析:依次将相邻两个数中后一个数减去前一个数得15,22,29,构成公差为7的等差数列,即所填数字为72+29+7=108。故选C。26、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。

A、10万元/个

B、11万元/个

C、12万元/个

D、13万元/个

【答案】:答案:C

解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。27、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原来的五位数是()。

A、18044

B、24059

C、27267

D、30074

【答案】:答案:B

解析:多位数问题考虑用代入排除法解题。代入A选项,180=44×4+4,但44180≠18044×2+11122,不符合题意,排除;代入B选项,240=59×4+4,59240=24059×2+11122,符合题意,正确。故选B。28、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20米,这只青蛙爬出井口至少需要多少天?()

A、2

B、3

C、4

D、5

【答案】:答案:C

解析:第一天青蛙爬了10-6=4米,距离井口20-4=16米;第二天爬了4+(10-6)=8米,距离井口20-8=12米;第三天爬了8+(10-6)=12米,距离井口20-12=8米<10米;第四天青蛙可以直接爬出井口。这只青蛙爬出井口至少要4天。故选C。29、1806,1510,1214,918,()

A、724

B、722

C、624

D、622

【答案】:答案:D

解析:百位和千位看做一个数列,是18,15,12,9,构成公差为-3的等差数列,所以下一项应为6;十位和个位看做一个数列,是06,10,14,18,构成公差为4的等差数列,所以下一项应为22。故未知项应为622。故选D。30、钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢产量之和的一半,而其它产品共为3万吨。问该钢铁厂当年的产量为多少万吨?()

A、48

B、42

C、36

D、28

【答案】:答案:D

解析:假设总产量为,则型钢类产量为,钢板类产量为,钢管类为,钢丝的产量为,则,解得万吨,则总产量万吨。故正确答案为D。31、0,1,3,10,()

A、101

B、102

C、103

D、104

【答案】:答案:B

解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一项)2+1=1(第二项)12+2=332+1=10102+2=102,其中所加的数呈1,2,1,2规律。思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1。故选B。32、145,120,101,80,65,()

A、48

B、49

C、50

D、51

【答案】:答案:A

解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。33、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。34、甲、乙、丙三名质检员对一批依次编号为1~100的电脑进行质量检测,每个人均从随机序号开始,按顺序往后检测,如检测到编号为100的电脑,则该质检员的检测工作结束。某一时刻,甲检测了76台电脑,乙检测了61台电脑,丙检测了54台电脑,则甲、乙、丙三人均检测过的电脑至少有()台。

A、12

B、15

C、16

D、18

【答案】:答案:B

解析:因为甲、乙、丙三人均从随机序号开始,按顺序往后检测。为了使三人均检测过的电脑最少,所以三人的检测要更分散,因为甲检测了76台电脑,覆盖面比较大,所以可以先把乙、丙共同检测的电脑分散在序号的最两端,最少为61+54-100=15(台),甲会覆盖到乙、丙检测的公共部分,故三人均检测过的为15台。故选B。35、21,27,40,61,94,148,()

A、239

B、242

C、246

D、252

【答案】:答案:A

解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。36、3,2,2,5,17,()

A、24

B、36

C、44

D、56

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得-1,0,3,12,再次作差得1,3,9,构成公比为3的等比数列,即所填数字为9×3+12+17=56。故选D。37、90,85,81,78,()

A、75

B、74

C、76

D、73

【答案】:答案:C

解析:后项减去前项,可得-5、-4、-3、(-2),这是一个公差为1的等差数列,所以下一项为78-2=76。故选C。38、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。39、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。40、一个人从家到公司,当他走到路程的一半的时候,速度下降了10%,问:他走完全程所用时间的前半段和后半段所走的路程比是()。

A、10:9

B、21:19

C、11:9

D、22:18

【答案】:答案:B

解析:设前半程速度为10,则后半程速度为9,路程总长为180,则前半程用时9,后半程用时10,总耗时19,一半为9.5。因此前半段时间走过的路程为90+9×(9.5-9)=94.5,后半段时间走过的路程为9×9.5=85.5。两段路程之比为94.5:85.5=21:19。故选B。41、187,259,448,583,754,()

A、847

B、862

C、915

D、944

【答案】:答案:B

解析:各项数字和均为16。故选B。42、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()

A、5

B、7

C、9

D、11

【答案】:答案:B

解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。43、1,2,6,30,210,()

A、1890

B、2310

C、2520

D、2730

【答案】:答案:B

解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相邻两项后一项除以前一项的商构成连续的质数列,即所填数字为210×11=2310。故选B。44、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。45、甲种酒精有4升,乙种酒精有6升,混合成的酒精含酒精62%;如果两种酒精溶液一样多,混合成的酒精溶液含酒精61%,乙种酒精溶液含有纯酒精百分之几?()

A、56

B、66

C、58

D、64

【答案】:答案:B

解析:设甲种酒精浓度x%,乙种酒精浓度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙种酒精浓度为66%。故选B。46、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。47、在一次知识竞赛中,甲、乙两单位平均分为85分,甲单位得分比乙单位高10分,则乙单位得分为()分。

A、88

B、85

C、80

D、75

【答案】:答案:C

解析:根据“甲、乙平均分为85分”,可得总分为85×2=170(分)。设乙得分为x,那么甲得分为x+10,由题意有x+x+10=170,解得x=80。故选C。48、-1,6,25,62,()

A、123

B、87

C、150

D、109

【答案】:答案:A

解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。49、13,14,16,21,(),76

A、23

B、35

C、27

D、22

【答案】:答案:B

解析:相连两项相减:1,2,5,();再减一次:1,3,9,27;()=14;21+14=35。故选B。50、某班一次数学测试,全班平均91分,其中男生平均88分,女生平均93分,则女生人数是男生人数的多少倍?()

A、0.5

B、1

C、1.5

D、2

【答案】:答案:C

解析:设男生、女生人数分别为x、y,可得88x+93y=91(x+y),解得,即女生是男生的1.5倍。故选C。51、8,4,8,10,14,()

A、22

B、20

C、19

D、24

【答案】:答案:C

解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。52、一次数学考试共有20道题,规定:答对一题得2分,答错一题扣1分,未答的题不计分。考试结束后,小明共得23分,他想知道自己做错了几道题,但只记得未答的题的数目是一个偶数。请你帮助小明计算一下,他答错了多少道题?()

A、3

B、4

C、5

D、6

【答案】:答案:A

解析:设答对x道,答错y道,未答z道,根据共有20道题,可得x+y+z=20;由共得23分,可得2x-y=23,由于2x为偶数,23为奇数,故y为奇数,排除B、D。代入A选项,可得2x-3=23,解得x=13,此时z=4,符合未答题目数是偶数。故选A。53、钢铁厂某年总产量的1/6为型钢类,1/7为钢板类,钢管类的产量正好是型钢和钢板产量之差的14倍,而钢丝的产量正好是钢管和型钢产量之和的一半,而其它产品共为3万吨。问该钢铁厂当年的产量为多少万吨?()

A、48

B、42

C、36

D、28

【答案】:答案:D

解析:假设总产量为,则型钢类产量为,钢板类产量为,钢管类为,钢丝的产量为,则,解得万吨,则总产量万吨。故正确答案为D。54、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。

A、110分钟

B、150分钟

C、127分钟

D、128分钟

【答案】:答案:B

解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。55、某单位组织工会活动,30名员工自愿参加做游戏。游戏规则:按1~30号编号并报数,第一次报数后,单号全部站出来,然后每次余下的人中第一个开始站出来,隔一人站出来一个人。最后站出来的人给大家唱首歌。那么给大家唱歌的员工编号是()。

A、14

B、16

C、18

D、20

【答案】:答案:B

解析:第一次报数后,单号全部站出来,剩余号码为2、4、6、8、10······30,均为2的倍数;每次余下的人中第一个开始站出来,隔一人站出来一个人,剩余号码为4、8、12、16、20、24、28,均为4的倍数;再从余下的号码中第一个人开始站出来,隔一个人站出来一个人,剩余号码为8、16、24,均为8的倍数;重复上一次的步骤,剩余16号,为16的倍数。1—30中16的倍数只有16。故选B。56、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。

A、110分钟

B、150分钟

C、127分钟

D、128分钟

【答案】:答案:B

解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。57、1/2,1,1,(),9/11,11/13

A、2

B、3

C、1

D、9

【答案】:答案:C

解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13连续质数列。故选C。58、13,14,16,21,(),76

A、23

B、35

C、27

D、22

【答案】:答案:B

解析:相连两项相减:1,2,5,();再减一次:1,3,9,27;()=14;21+14=35。故选B。59、140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则有一队不用比赛直接进人下—轮。问夺冠的球队至少要参加几场比赛? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根据题意,如果是奇数队的话,有一队轮空,自动进入下一场。题目问冠军至少需要参加几场比赛,为了让冠军参加的场次尽可能的少,每次轮空自动进入下一场的都是冠军。整个比赛过程为:140-70-35-18-9-5-3-2-1,需要进行8轮,有4轮是轮空的。所以冠军至少需要进行4场比赛。故选B。60、41,59,32,68,72,()

A、28

B、36

C、40

D、48

【答案】:答案:A

解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。61、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。

A、192

B、198

C、200

D、212

【答案】:答案:A

解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。62、2,3,6,18,108,()

A、1944

B、1620

C、1296

D、1728

【答案】:答案:A

解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。63、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。64、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。65、在一次知识竞赛中,甲、乙两单位平均分为85分,甲单位得分比乙单位高10分,则乙单位得分为()分。

A、88

B、85

C、80

D、75

【答案】:答案:C

解析:根据“甲、乙平均分为85分”,可得总分为85×2=170(分)。设乙得分为x,那么甲得分为x+10,由题意有x+x+10=170,解得x=80。故选C。66、21,59,1117,2325,(),9541

A、3129

B、4733

C、6833

D、8233

【答案】:答案:B

解析:原数列各项可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分数字作差后构成等比数列,后半部分作差后构成等差数列。因此未知项为4733。故选B。67、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。68、某农户在鱼塘里放养了一批桂花鱼苗。过了一段时间,为了得知鱼苗存活数量,他先从鱼塘中捕出200条鱼,做上标记之后,再放回鱼塘,过几天后,再从鱼塘捕出500条鱼,其中有标记的鱼苗有25条。假设存活的鱼苗在这几天没有死,则这个鱼塘里存活鱼苗的数量最有可能是()条。

A、1600

B、2500

C、3400

D、4000

【答案】:答案:D

解析:由的25/200=500/x,解得x=4000。故选D。69、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()

A、星期一

B、星期二

C、星期三

D、星期四

【答案】:答案:D

解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。70、33.1,88.1,47.1,()

A、29.3

B、34.5

C、16.1

D、28.9

【答案】:答案:C

解析:小数点左边:33、88、47、16成奇、偶、奇、偶的规律,小数点右边:1、1、1、1等差。故选C。71、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。72、95,88,71,61,50,()

A、40

B、39

C、38

D、37

【答案】:答案:A

解析:95-9-5=81,88-8-8=72,71-7-1=63,61-6-1=54,50-5-0=45,40-4-0=36,其中81,72,63,54,45,36等差。故选A。73、6,21,43,72,()

A、84

B、96

C、108

D、112

【答案】:答案:C

解析:依次将相邻两个数中后一个数减去前一个数得15,22,29,构成公差为7的等差数列,即所填数字为72+29+7=108。故选C。74、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()

A、5

B、7

C、9

D、11

【答案】:答案:B

解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。75、某服装店有一批衬衣共76件,分别卖给了33位顾客,每位顾客最多买了3件。衬衣定价为100元,买1件按原价,买2件总价打九折,买3件总价打八折。最后卖完这批衬衣共收入6460元,则买了3件的顾客有()位。

A.4

B.8

C.14

D.15

【答案】:答案:C

解析:由题意可设买了1件、2件、3件衣服的人数分别为x、y、z人,则可得x+y+z=33,x+2y+3z=76,,联立求解可得x=4,y=15,z=14。故正确答案为C。76、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()

A、250

B、285

C、300

D、325

【答案】:答案:C

解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。77、2,12,40,112,()

A、224

B、232

C、288

D、296

【答案】:答案:C

解析:原数列可以写成1×2,3×4,5×8,7×16,前一个乘数数列为1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,16,是等比数列,下一项是32,所以原数列空缺项为9×32=288。故选C。78、7,7,9,17,43,()

A、119

B、117

C、123

D、121

【答案】:答案:C

解析:依次将相邻两项做差得0,2,10,26,再次做差得2,6,18。构成一个公比为3的等比数列,即所填数字为43+26+18×3=123。故选C。79、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。80、2/3,1/2,3/7,7/18,()

A、4/11

B、5/12

C、7/15

D、3/16

【答案】:答案:A

解析:4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22。故选A。81、44,52,59,73,83,94,()

A、107

B、101

C、105

D、113

【答案】:答案:A

解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。82、某小区有40%的住户订阅日报,有15%的住户同时订阅日报和时报,至少有75%的住户至少订阅两种报纸中的一种,问订阅时报的比例至少为多少?()

A、35%

B、50%

C、55%

D、60%

【答案】:答案:B

解析:设订阅时报的住户为x,至少订阅一种报纸的人数为40%+x-15%。由至少75%的住户至少订阅两种报纸中的一种得,40%+x-15%≥75%,解得x≥50%。故选B。83、甲、乙、丙、丁四人开展羽毛球比赛,首轮每人需和另外3人各比1场,获胜2场及以上者进入下一轮,否则淘汰。甲胜乙、丙、丁的概率分别为70%、50%、40%,问甲首轮遭淘汰的概率是多少?()

A、42.5%

B、45%

C、47.5%

D、48%

【答案】:答案:B

解析:获胜2场及以上者进入下一轮,甲首轮遭淘汰,则甲输了2场或者3场。分别枚举如下:(1)甲输三场的概率为30%×50%×60%=9%;(2)甲输两场有三种可能:①赢乙输丙丁,概率为70%×50%×60%=21%;②赢丙输乙丁,概率为30%×50%×60%=9%;③赢丁输乙丙,概率为30%×50%×40%=6%。甲首轮遭淘汰的概率为9%+21%+9%+6%=45%。故选B。84、78,9,64,17,32,19,()

A、18

B、20

C、22

D、26

【答案】:答案:A

解析:两两相加=>87、73、81、49、51、37=>每项除以3,则余数为=>0、1、0、1、0、1。故选A。85、2,4,10,18,28,(),56

A、32

B、42

C、52

D、54

【答案】:答案:B

解析:因式分解数列。2=1×2,4=1×4,10=2×5,18=3×6,28=4×7,()=?×?,56=7×8,每一项的两个因子之和分别为3、5、7、9、11、()、15,构成公差为2的等差数列。由此可知,空缺项的两个因子的和为13,结合选项,只有B项的42=6×7分解后两个因子的和为13。故选B。86、8,4,8,10,14,()

A、22

B、20

C、19

D、24

【答案】:答案:C

解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。87、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。88、5,7,9,(),15,19

A、11

B、12

C、13

D、14

【答案】:答案:C

解析:5=2+3,7=2+5,9=2+7,15=2+13,19=2+17,每一项是一个连续质数数列与2的和,即所填数字为11+2=13。故选C。89、在某企业,40%的员工有至少3年的工龄,16个员工有至少8年的工龄。如果90%的员工的工龄不足8年,则工龄至少3年但不足8年的员工有()人。

A、48

B、64

C、80

D、144

【答案】:答案:A

解析:由于不足8年工龄的员工占90%,则至少8年工龄的员工占1-90%=10%,可得员工总数为16÷10%=160(人),故工龄至少3年但不足8年的员工有160×40%-16=48(人)。故选A。90、祖父今年65岁,3个孙子的年龄分别是15岁、13岁与9岁,问多少年后3个孙子的年龄之和等于祖父的年龄?()

A、23

B、14

C、25

D、16

【答案】:答案:B

解析:设n年后3个孙子的年龄之和等于祖父的年龄,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故选B。91、130,68,30,(),2

A、11

B、12

C、10

D、9

【答案】:答案:C

解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。92、某果品公司计划安排6辆汽车运载A、B、C三种水果共32吨进入某市销售,要求每辆车只装同一种水果且必须装满,根据下表提供的信息,则有()种安排车辆方案。

A、1

B、2

C、3

D、4

【答案】:答案:A

解析:设运送三种水果的车辆数分别为X、Y、Z,根据题意可列式①X+Y+Z=6;②6X+5Y+4Z=32,X、Y、Z为车辆数都为正整数,②中6X和4Z都为偶数,所以Y必然是偶数,且Y≤4,Y=2或4。当Y=4时X=2、Z=0不符合题意,故本题解只有一组X=3、Y=2、Z=1。故选A。93、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。94、2,1,2/3,1/2,()

A、3/4

B、1/4

C、2/5

D、5/6

【答案】:答案:C

解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5。故选C。95、90,85,81,78,()

A、75

B、74

C、76

D、73

【答案】:答案:C

解析:后项减去前项,可得-5、-4、-3、(-2),这是一个公差为1的等差数列,所以下一项为78-2=76。故选C。96、4,10,34,130,()

A、184

B、258

C、514

D、1026

【答案】:答案:C

解析:解法一:二级等差数列变式。解法二:从第三项开始,第三项等于第二项的5倍减去第一项的4倍,即34=5×10-4×4,130=5×34-4×10,(514)=5×130-4×34。故选C。97、5,12,24,36,52,()

A、58

B、62

C、68

D、72

【答案】:答案:C

解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是从小到大的质数和,所以下一个是31+37=68。故选C。98、钟表有一个时针和一个分针,分针每一小时转360度,时针每12小时转360度,则24小时内时针和分针成直角共多少次:

A.28

B.36

C.44

D.48

【答案】:答案:C

解析:一般情况,1小时内会出现2次垂直情况,但是3点、9点、15点、21点这4个特殊时间,只有1次垂直,所以有。故正确答案为C。99、8,6,-4,-54,()

A、-118

B、-192

C、-320

D、-304

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得-2,-10,-50,构成公比为5的等比数列,即所填数字为-54+(-250)=-304。故选D。100、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。101、41,59,32,68,72,()

A、28

B、36

C、40

D、48

【答案】:答案:A

解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。102、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。103、1,1,3,7,17,41,()

A、89

B、99

C、109

D、119

【答案】:答案:B

解析:第三项=第二项×2+第一项,99=41×2+17。故选B。104、1,2,4,3,5,6,9,18,()

A、14

B、24

C、27

D、36

【答案】:答案:A

解析:位于奇数项的1、4、5、9构成和数列,位于偶数项的2、3、6、18构成积数列,即所填的奇数项应为5+9=14。故选A。105、1,3,2,6,11,19,()

A、24

B、36

C、29

D、38

【答案】:答案:B

解析:该数列为和数列,即前三项之和为第四项。故空缺处应为6+11+19=36。故选B。106、办公室小李发现写字台上的台历很久没有翻了,就一次翻了7张,这些台历的日期数加起来恰好是77,请问这一天是几号?()

A、14

B、15

C、16

D、17

【答案】:答案:B

解析:翻过去的7天的日期是公差为1的等差数列,和是77,根据等差数列求和公式,可知中位数=77÷7=11,7天中位数是第4天即第4天为11号。第七天是11+(7-4)×1=14号,可知今天是15号。故选B。107、(1296-18)÷36的值是()。

A、20

B、35.5

C、19

D、36

【答案】:答案:B

解析:原式可转化为1296÷36-18÷36=36-0.5=35.5。故选B。108、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。109、3,-6,12,-24,()

A、42

B、44

C、46

D、48

【答案】:答案:D

解析:公比为-2的等比数列。故选D。110、12,27,72,(),612

A、108

B、188

C、207

D、256

【答案】:答案:C

解析:(第一项-3)×3=第二项,(72-3)×3=(207),(207-3)×3=612。故选C。111、1,6,36,216,()

A、1296

B、1297

C、1299

D、1230

【答案】:答案:A

解析:数列是公比为6的等比数列,则所求项为216×6=1296(也可用尾数法,尾数为6)。故选A。112、从1开始的第2009个奇数是()。

A、4011

B、4013

C、4015

D、4017

【答案】:答案:D

解析:因为每两个相邻的奇数均相差2,而第2009个奇数是第1个奇数1之后的第2008个奇数,那么第2009个奇数应该是1+2008×2=4017。故选D。113、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。114、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。115、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次进位,像这样的三位数总共有多少个? ()

A、48

B、126

C、174

D、180

【答案】:答案:C

解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的数是0、2、4、6、8。又因为与这个三位数相加有且只有一次进位,所以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,十位可以是0、1、2、3、4、5、6七个数,百位是1-9九个数,这种情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有174(48+126=174)个,即:像这样的三位数总共有174个。故选C。116、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。117、140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则有一队不用比赛直接进人下—轮。问夺冠的球队至少要参加几场比赛? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根据题意,如果是奇数队的话,有一队轮空,自动进入下一场。题目问冠军至少需要参加几场比赛,为了让冠军参加的场次尽可能的少,每次轮空自动进入下一场的都是冠军。整个比赛过程为:140-70-35-18-9-5-3-2-1,需要进行8轮,有4轮是轮空的。所以冠军至少需要进行4场比赛。故选B。118、84,12,48,30,39,()

A、23

B、36.5

C、34.5

D、43

【答案】:答案:C

解析:依次将相邻两个数中前一个数减去后一个数得72,-36,18,-9,构成公比为-0.5的等比数列,即所填数字为39-4.5=34.5。故选C。119、4,8,28,216,()

A、6020

B、2160

C、4200

D、4124

【答案】:答案:A

解析:4×(8-1)=28,8×(28-1)=216,即所填数字为28×(216-1)=6020。故选A。120、2,1,2/3,1/2,()

A、3/4

B、1/4

C、2/5

D、5/6

【答案】:答案:C

解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5。故选C。121、1,11,21,31,()

A、39

B、49

C、41

D、51

【答案】:答案:C

解析:题中数列为公差为10的等差数列,故()=31+10=41。故选C。122、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。123、8,6,-4,-54,()

A、-118

B、-192

C、-320

D、-304

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得-2,-10,-50,构成公比为5的等比数列,即所填数字为-54+(-250)=-304。故选D。124、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。125、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。126、2,14,84,420,1680,()

A、2400

B、3360

C、4210

D、5040

【答案】:答案:D

解析:两两做商得到7,6,5,4,按此规律下一项为3,所以所求项为1680×3=5040。故选D。127、-2,1,31,70,112,()

A、154

B、155

C、256

D、280

【答案】:答案:B

解析:依次将相邻两项做差得3、30、39、42,再次做差得27、9、3,是公比为1/3的等比数列,即所填数字为(3÷3)+42+112=155。故选B。128、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()

A、760

B、1120

C、900

D、850

【答案】:答案:C

解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。129、-24,3,30,219,()

A、289

B、346

C、628

D、732

【答案】:答案:D

解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填数字为93+3=732。故选D。130、2,2,6,14,34,()

A、82

B、50

C、48

D、62

【答案】:答案:A

解析:2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82。故选A。131、商店购入一百多件A款服装,其单件进价为整数元,总进价为1万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A款服装?()

A、13

B、15

C、17

D、19

【答案】:答案:C

解析:推出A款服装有125件,进价为80元,B款服装进价为80×0.75=60(元),B款服装定价为60×1.6=96(元),利润为96-60=36(元),A款服装利润为36×2=72(元),所以A款服装售价为80+72=152(元)。销售数量至少为2500÷152=16.4,取整为17件。故选C。132、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。133、6,3,5,13,2,63,()

A、-36

B、-37

C、-38

D、-39

【答案】:答案:B

解析:6×3-5=13,3×5-13=2,5×13-2=63,第四项=第一项×第二项-第三项,即所填数字为13×2-63=-37。故选B。134、2,5,9,19,37,75,()

A、140

B、142

C、146

D、149

【答案】:答案:C

解析:方法一:2×2+1=5,5×2-1=9,9×2+1=19,19×2-1=37,37×2+1=75,奇数项,每项乘以2加上1等于后一项;偶数项,每项乘以2减去1等于后一项,即所填数字为75×2-1=149。方法二:2×2+5=9,5×2+9=19,9×2+19=37,19×2+37=75,第三项=第一项×2+第二项,即所填数字为37×2+75=149。故选C。135、1,2,3,6,12,24,()

A、48

B、45

C、36

D、32

【答案】:答案:A

解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。136、2,2,3,4,9,32,()

A、129

B、215

C、257

D、283

【答案】:答案:D

解析:2×2-1=3,3×2-2=4,4×3-3=9,9×4-4=32,第n+2项=第n项×第(n+1)项-n(n=1,2,…),即所填数字为32×9-5=283。故选D。137、1,1,3,7,17,41,()

A、89

B、99

C、109

D、119

【答案】:答案:B

解析:第三项=第二项×2+第一项,99=41×2+17。故选B。138、某班一次数学测试,全班平均91分,其中男生平均88分,女生平均93分,则女生人数是男生人数的多少倍?()

A、0.5

B、1

C、1.5

D、2

【答案】:答案:C

解析:设男生、女生人数分别为x、y,可得88x+93y=91(x+y),解得,即女生是男生的1.5倍。故选C。139、1,1,2,8,64,()

A、1024

B、1280

C、512

D、128

【答案】:答案:A

解析:后一项除以前一项得1、2、4、8、(16),构成公比为2的等比数列,64×16=(1024)。故选B。140、2,3,13,175,()

A、30625

B、30651

C、30759

D、30952

【答案】:答案:B

解析:第一项乘以2,然后加第二项的平方等于第三项。2×2+3×3=13。第二项乘以2,然后加第三项的平方等于第四项。3×2+13×13=175。第三项乘以2,然后加第四项的平方等于第五项。13×2+175×175=30651。故选B。141、8,6,-4,-54,()

A、-118

B、-192

C、-320

D、-304

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得-2,-10,-50,构成公比为5的等比数列,即所填数字为-54+(-250)=-304。故选D。142、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()

A、101

B、175

C、188

D、200

【答案】:答案:C

解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。143、44,52,59,73,83,94,()

A、107

B、101

C、105

D、113

【答案】:答案:A

解析:每相邻的两项作差,得到8,7,14,10,11,每一个差是原数列中前一项个位数与十位数字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知项为13+94=107。故选A。144、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]

A、30

B、32

C、34

D、36

【答案】:答案:A

解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故选A。145、5,12,24,36,52,()

A、58

B、62

C、68

D、72

【答案】:答案:C

解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是从小到大的质数和,所以下一个是31+37=68。故选C。146、10,9,17,50,()

A、100

B、99

C、199

D、200

【答案】:答案:C

解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故选C。147、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原来的五位数是()。

A、18044

B、24059

C、27267

D、30074

【答案】:答案:B

解析:多位数问题考虑用代入排除法解题。代入A选项,180=44×4+4,但44180≠18044×2+11122,不符合题意,排除;代入B选项,240=59×4+4,59240=24059×2+11122,符合题意,正确。故选B。148、小孙的口袋里有四颗糖,一颗巧克力味的,一颗苹果味的,两颗牛奶味的。小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?()

A、1/3

B、1/4

C、1/5

D、1/6

【答案】:答案:C

解析:两颗都是牛奶味的糖只有一种情况,而其中至少一颗是牛奶味的糖共有5种情况:(牛奶味1、苹果味),(牛奶味1、巧克力味),(牛奶味2、苹果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的另一颗糖也是牛奶味的概率为1/5。故选C。149、有一1500米的环形跑道,甲,乙二人同时同地出发,若同方向跑,50分钟后甲比乙多跑一圈,若以反方向跑,2分钟后二人相遇,则乙的速度为()。

A、330米/分钟

B、360米/分钟

C、375米/分钟

D、390米/分钟

【答案】:答案:B

解析:同向追及50分钟后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分钟后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分钟)。故选B。150、一个四边形广场,它的四边长分别是60米、72米、96米、84米,现在四边上植树,四角需种树,而且每两棵树的间隔相等,那么,至少要种多少棵树?()

A、22

B、25

C、26

D、30

【答案】:答案:C

解析:根据四角需种树,且每两棵树的间隔相等可知,间隔距离应为四边边长的公约数;要使棵树至少,则间隔距离要尽量最大,公约数最大为12(60、72、96、84的最大公约数)。故棵数=段数=长度÷间距=(60+72+84+96)÷12=26(棵)。故选C。151、2,12,40,112,()

A、224

B、232

C、288

D、296

【答案】:答案:C

解析:原数列可以写成1×2,3×4,5×8,7×16,前一个乘数数列为1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,16,是等比数列,下一项是32,所以原数列空缺项为9×32=288。故选C。152、2,7,13,20,25,31,()

A、35

B、36

C、37

D、38

【答案】:答案:D

解析:依次将相邻两个数中后一个数减去前一个数得5,6,7,5,6,为(5,6,7)三个数字组成的循环数列,即所填数字为31+7=38。故选

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论