版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数量关系易错题集第一部分单选题(200题)1、7,7,16,42,107,()
A、274
B、173
C、327
D、231
【答案】:答案:D
解析:做一次差后得到数列:13-1,23+1,33-1,43+1,53-1。故选D。2、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各项减2后为质数列,故下一项为17+2=19。故选B。3、某单位组织工会活动,30名员工自愿参加做游戏。游戏规则:按1~30号编号并报数,第一次报数后,单号全部站出来,然后每次余下的人中第一个开始站出来,隔一人站出来一个人。最后站出来的人给大家唱首歌。那么给大家唱歌的员工编号是()。
A、14
B、16
C、18
D、20
【答案】:答案:B
解析:第一次报数后,单号全部站出来,剩余号码为2、4、6、8、10······30,均为2的倍数;每次余下的人中第一个开始站出来,隔一人站出来一个人,剩余号码为4、8、12、16、20、24、28,均为4的倍数;再从余下的号码中第一个人开始站出来,隔一个人站出来一个人,剩余号码为8、16、24,均为8的倍数;重复上一次的步骤,剩余16号,为16的倍数。1—30中16的倍数只有16。故选B。4、7,9,-1,5,()
A、3
B、-3
C、2
D、-1
【答案】:答案:B
解析:7+9=16,9+(-1)=8,(-1)+5=4,5+(-3)=2,其中16,8,4,2等比。故选B。5、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。6、以正方形的4个顶点和中心点中的任意三点为顶点可以构成几种面积不等的三角形?()
A、1
B、2
C、3
D、4
【答案】:答案:B
解析:若3个点都从正方形的4个顶点中取,则得到的三角形面积是正方形面积的一半:若3个点中有一个是中心点,其他2个是正方形的顶点,则得到的三角形面积是正方形面积的四分之一。因此,可以构成2种面积不等的兰角形。故选B。7、某年的10月里有5个星期六,4个星期日,则这年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因为有5个星期六,4个星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故选D。8、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。
A、10万元/个
B、11万元/个
C、12万元/个
D、13万元/个
【答案】:答案:C
解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。9、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。10、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余几?()
A、1
B、2
C、3
D、4
【答案】:答案:D
解析:a除以5余1,假设a=6;b除以5余4,假设b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故选D。11、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。12、102,314,526,()
A、624
B、738
C、809
D、849
【答案】:答案:B
解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。13、1,8,9,4,(),1/6
A、3
B、2
C、1
D、1/3
【答案】:答案:C
解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-1)。故选C。14、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各项减2后为质数列,故下一项为17+2=19。故选B。15、226,264,316,388,()
A、236
B、386
C、486
D、566
【答案】:答案:C
解析:226=225+1=152+13,264=256+8=162+23,316=289+27=172+33,388=324+64=182+43,由此可以推知下一项应为192+53=486。故选C。16、当含盐30%的60千克盐水蒸发为含盐40%的盐水时,盐水重量为多少千克?()
A、45
B、50
C、55
D、60
【答案】:答案:A
解析:设蒸发后盐水质量为x千克,由盐水中盐的质量不变可得,60×30%=40%x,解得x=45。故选A。17、84,12,48,30,39,()
A、23
B、36.5
C、34.5
D、43
【答案】:答案:C
解析:依次将相邻两个数中前一个数减去后一个数得72,-36,18,-9,构成公比为-0.5的等比数列,即所填数字为39-4.5=34.5。故选C。18、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填数字应为(136+1)×5=685。故选A。19、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。20、某旅游部门规划一条从甲景点到乙景点的旅游线路,经测试,旅游船从甲到乙顺水匀速行驶需3小时;从乙返回甲逆水匀速行驶需4小时。假设水流速度恒定,甲乙之间的距离为y公里,旅游船在静水中匀速行驶y公里需要x小时,则x满足的方程为()。
A、1/3-1/x=1/x-1/4
B、1/3-1/x=1/4+1/x
C、1/(x+3)=1/4-1/x
D、1/(4-x)=1/x+1/3
【答案】:答案:A
解析:由题意可知,旅游船的静水速度为y/x公里/时,顺水速度为y/3公里/时,逆水速度为y/4公里/时。由水速=水速度-静水速度=静水速度-逆水速度,我们可得:y/3-y/x=y/x-y/4,消去y,得:1/3-1/x=1/x-1/4,故选A。考点点拨:解决流水问题的关键在于找出船速、水速、顺水速度和逆水速度四个量,然后根据其之间的关系求出未知量。故选A。21、2012年3月份的最后一天是星期六,则2013年3月份的最后一天是()。
A、星期天
B、星期四
C、星期五
D、星期六
【答案】:答案:A
解析:从2012年3月31号到2013年3月31号,一共是365天,365÷7=52周…1天,所以星期六加一天即为星期天。故选A。22、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。23、-7,0,1,2,9,()
A、42
B、18
C、24
D、28
【答案】:答案:D
解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。24、30个小朋友围成一圈玩传球游戏,每次球传给下一个小朋友需要1秒。当老师喊“转向”时,要改变传球方向。如果从小华开始传球,老师在游戏开始后的第16、31、49秒喊“转向”,那么在第多少秒时,球会重新回到小华手上?()
A、68
B、69
C、70
D、71
【答案】:答案:A
解析:设小华的位置为0号,按顺时针方向编号依次为0号、1号、2号、……、29号。小华以顺时针方向开始传球。①经过16秒,顺时针传到16号;②转向:经过15秒(31-16=15),逆时针传到1号;③转向:经过18秒(49-31=18),顺时针传到19号;④转向:经过19秒,逆时针传回到小华手中。在第49+19=68(秒)时,球会重新回到小华手上。故选A。25、2,3,8,27,32,(),128
A、64
B、243
C、275
D、48
【答案】:答案:B
解析:间隔组合数列。奇数项是公比为4的等比数列,偶数项是公比为9的等比数列,所求项为27×9=(243)。故选B。26、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶数项的小数部分和整数部分相同。故选D。27、1806,1510,1214,918,()
A、724
B、722
C、624
D、622
【答案】:答案:D
解析:百位和千位看做一个数列,是18,15,12,9,构成公差为-3的等差数列,所以下一项应为6;十位和个位看做一个数列,是06,10,14,18,构成公差为4的等差数列,所以下一项应为22。故未知项应为622。故选D。28、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。29、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶甲、两瓶乙、两瓶丙混合,前两种浓度都是50%,所以只需要加入适量水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%的酒精溶液溶度变为50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和乙丙溶液各一瓶混合后浓度必然为50%。若甲、乙和丙各一瓶混合时浓度仍然为50%,则需加水为(公斤)。故选C。30、某饮料店有纯果汁(即浓度为100%)10千克,浓度为30%的浓缩还原果汁20千克。若取纯果汁、浓缩还原果汁各10千克倒入10千克纯净水中,再倒入10千克的浓缩还原果汁,则得到的果汁浓度为多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根据题干可得,一共倒入纯果汁(即浓度为100%)10千克,纯净水10千克,浓度为30%的浓缩还原果汁20千克。可知最终溶液的量为10+10+20=40(千克),最终溶质为10+20×30%=16(千克)。则最终果汁浓度=16÷40×100%=40%。故选A。31、1,11,21,31,()
A、39
B、49
C、41
D、51
【答案】:答案:C
解析:题中数列为公差为10的等差数列,故()=31+10=41。故选C。32、某一学校有500人,其中选修数学的有359人,选修文学的有408人,那么两种课程都选的学生至少有多少?()
A、165人
B、203人
C、267人
D、199人
【答案】:答案:C
解析:设至少有x人两种课程都选,则359-x+408-x+x≤500,解得x≥267,则两种课程都选的学生至少有267人。故选C。33、小张购买了2个苹果、3根香蕉、4个面包和5块蛋糕,共消费58元。如果四种商品的单价都是正整数且各不相同,则每块蛋糕的价格最高可能为多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:设苹果、香蕉、面包、蛋糕的单价分别为x、y、z、w,根据共消费58元,得2x+3y+4z+5w=58。代入排除,根据最高,优先从值最大的选项代入。D选项,当w=8时,可得2x+3y+4z=18,由2x、4z、18均为偶数,则3y为偶数,即y为偶数且小于6。当y=2,有2x+4z=12,即x+2z=6,均为正整数且各不相同,若z=1,则x=4,此时满足题意。故选D。34、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。35、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每项变成汉字为一、十、三、五、十三的笔画数1,2,3,4,5等差。故选C。36、有一个五位数,左边的三位数比右边的两位数的4倍还多4,如果把右边两位数移到最前面,新的五位数比原来的2倍还多11122,则原来的五位数是()。
A、18044
B、24059
C、27267
D、30074
【答案】:答案:B
解析:多位数问题考虑用代入排除法解题。代入A选项,180=44×4+4,但44180≠18044×2+11122,不符合题意,排除;代入B选项,240=59×4+4,59240=24059×2+11122,符合题意,正确。故选B。37、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]
A、30
B、32
C、34
D、36
【答案】:答案:A
解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故选A。38、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。39、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。40、甲、乙两位村民去县城A商店买东西,他们同时在村口出发,甲骑车而乙步行,但他们又同时到达A商店。途中甲休息的时间是乙步行时间的5/6,而乙休息的时间是甲骑车时间的1/2,则甲、乙途中休息的时间比是()。
A、4:1
B、5:1
C、5:2
D、6:1
【答案】:答案:B
解析:设乙步行时间为6x,甲骑车时间为2y,则甲休息的时间为5x,乙休息的时间为y,则由“他们同时在村口出发,甲骑车而乙步行,但他们又同时到达A商店”可得:2y+5x=6x+y,解得x:y=1:1。因此,甲、乙途中休息的时间比是5x:y=5:1。故选B。41、2,6,13,39,15,45,23,()
A、46
B、66
C、68
D、69
【答案】:答案:D
解析:6=2×3,39=13×3,45=15×3。两个数为一组,每组中的第二个数是第一个数的三倍,即所填数字为23×3=69。故选D。42、20/9,4/3,7/9,4/9,1/4,()
A、3/7
B、5/12
C、5/36
D、7/36
【答案】:答案:C
解析:20/9,4/3,7/9,4/9,1/4,(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36;分母36,36,36,36,36,36等差;分子80,48,28,16,9,5三级等差。故选C。43、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)项-第N项=-3[第N项-第(N+1)项](N≥2),即所填数字为4-=5。故选D。44、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。45、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20米,这只青蛙爬出井口至少需要多少天?()
A、2
B、3
C、4
D、5
【答案】:答案:C
解析:第一天青蛙爬了10-6=4米,距离井口20-4=16米;第二天爬了4+(10-6)=8米,距离井口20-8=12米;第三天爬了8+(10-6)=12米,距离井口20-12=8米<10米;第四天青蛙可以直接爬出井口。这只青蛙爬出井口至少要4天。故选C。46、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故选C。47、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()
A、15
B、13
C、10
D、8
【答案】:答案:B
解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。48、某高速公路收费站对过往车辆的收费标准是:大型车30元/辆、中型车15元/辆、小型车10元/辆。某天,通过收费站的大型车与中型车的数量比是5∶6,中型车与小型车的数量比是4∶11,小型车的通行费总数比大型车的多270元,这天的收费总额是()。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型车的数量比为10∶12∶33。以10辆大型车、12辆中型车、33辆小型车为一组。每组小型车收费比大型车多33×10-10×30=30元。实际多270元,说明共通过了270÷30=9组。每组收费10×30+12×15+33×10=810元,收费总额为9×810=7290元。故选B。49、2,6,13,39,15,45,23,()
A、46
B、66
C、68
D、69
【答案】:答案:D
解析:6=2×3,39=13×3,45=15×3。两个数为一组,每组中的第二个数是第一个数的三倍,即所填数字为23×3=69。故选D。50、如果现在是18点整,那么分针旋转1990圈之后是几点钟?()
A、16
B、17
C、18
D、19
【答案】:答案:A
解析:分针旋转1圈为一小时,所以分针旋转12圈,时针旋转1圈,仍为18点整。由“1990÷12=165余10”可知,此时时钟表示的时间应是16点整。故选A。51、0,6,24,60,()
A、70
B、80
C、100
D、120
【答案】:答案:D
解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故选D。52、1,2,4,3,5,6,9,18,()
A、14
B、24
C、27
D、36
【答案】:答案:A
解析:位于奇数项的1、4、5、9构成和数列,位于偶数项的2、3、6、18构成积数列,即所填的奇数项应为5+9=14。故选A。53、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故选A。54、甲种酒精有4升,乙种酒精有6升,混合成的酒精含酒精62%;如果两种酒精溶液一样多,混合成的酒精溶液含酒精61%,乙种酒精溶液含有纯酒精百分之几?()
A、56
B、66
C、58
D、64
【答案】:答案:B
解析:设甲种酒精浓度x%,乙种酒精浓度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙种酒精浓度为66%。故选B。55、30个小朋友围成一圈玩传球游戏,每次球传给下一个小朋友需要1秒。当老师喊“转向”时,要改变传球方向。如果从小华开始传球,老师在游戏开始后的第16、31、49秒喊“转向”,那么在第多少秒时,球会重新回到小华手上?()
A、68
B、69
C、70
D、71
【答案】:答案:A
解析:设小华的位置为0号,按顺时针方向编号依次为0号、1号、2号、……、29号。小华以顺时针方向开始传球。①经过16秒,顺时针传到16号;②转向:经过15秒(31-16=15),逆时针传到1号;③转向:经过18秒(49-31=18),顺时针传到19号;④转向:经过19秒,逆时针传回到小华手中。在第49+19=68(秒)时,球会重新回到小华手上。故选A。56、有100名学生,他们都订阅甲、乙、丙三种杂志中的一种、两种或三种。至少有多少名学生订阅的杂志种类相同?()
A、13
B、14
C、15
D、16
【答案】:答案:C
解析:此题“订阅杂志种类”就是分组的依据。订阅一种杂志有3种情况,订阅两种杂志有3种情况,订阅三种杂志有1种情况。因此,总共有7种情况,故至少有14+1=15名学生订阅的杂志种类相同。故选C。57、1,3,10,37,()
A、112
B、144
C、148
D、158
【答案】:答案:B
解析:3=1×4-1;10=3×4-2;37=10×4-3;144=37×4-4。故选B。58、现有5盒动画卡片,各盒卡片张数分别为:7、9、11、14、17。卡片按图案分为米老鼠、葫芦娃、喜羊羊和灰太狼4种,每个盒内装的是同图案的卡片。已知米老鼠的卡片只有一盒,而喜羊羊、灰太狼图案的卡片数之和比葫芦娃图案的多1倍。据此可知,图案为米老鼠的卡片张数为()。
A、7
B、9
C、14
D、17
【答案】:答案:A
解析:(喜洋洋+灰太狼):葫芦娃=2:1,喜洋洋+灰太狼+葫芦娃是3的倍数;总张数=7+9+11+14+17=58张,58除以3余1,可得米老鼠的卡片只能是7张。故选A。59、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。60、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。61、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。62、有苹果若干个,若把其换成桔子,则多换5个;若把其换成菠萝,则少掉7个,已知每个桔子4角9分钱,每个菠萝7角钱,每个苹果的单价是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此题可理解为:把苹果全部卖掉,得到钱若干,若用这些钱买成同样数量的桔子,则剩下49×5=245分,若用这些钱买成同样数量的菠萝,则缺少70×7=490分,所以苹果个数=(245+490)÷(70-49)=35个,苹果总价=49×35+49×5=1960分,每个苹果单价=1960÷35=56分=5角6分。故选C。63、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。64、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故选C。65、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。66、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。67、2,3,10,15,26,35,()
A、40
B、45
C、50
D、55
【答案】:答案:C
解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,问号=7平方+1,问号=50。故选C。68、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。69、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数,构成公差为11的等差数列,即所填的数字为56+11=67。故选B。70、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。71、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。72、小张购买了2个苹果、3根香蕉、4个面包和5块蛋糕,共消费58元。如果四种商品的单价都是正整数且各不相同,则每块蛋糕的价格最高可能为多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:设苹果、香蕉、面包、蛋糕的单价分别为x、y、z、w,根据共消费58元,得2x+3y+4z+5w=58。代入排除,根据最高,优先从值最大的选项代入。D选项,当w=8时,可得2x+3y+4z=18,由2x、4z、18均为偶数,则3y为偶数,即y为偶数且小于6。当y=2,有2x+4z=12,即x+2z=6,均为正整数且各不相同,若z=1,则x=4,此时满足题意。故选D。73、78,9,64,17,32,19,()
A、18
B、20
C、22
D、26
【答案】:答案:A
解析:两两相加=>87、73、81、49、51、37=>每项除以3,则余数为=>0、1、0、1、0、1。故选A。74、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。75、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。76、有一支参加阅兵的队伍正在进行训练,这支队伍的人数是5的倍数且不少于1000人,如果按每横排4人编队,最后少3人,如果按每横排3人编队,最后少2人;如果按每横排2人编队,最后少1人。请问,这支队伍最少有多少人?()
A、1045
B、1125
C、1235
D、1345
【答案】:答案:A
解析:问最少,由小到大代入选项:代入A选项,(1045+3)能被4整除;(1045+2)能被3整除;(1045+1)能被2整除,满足题意。故选A。77、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶甲、两瓶乙、两瓶丙混合,前两种浓度都是50%,所以只需要加入适量水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%的酒精溶液溶度变为50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和乙丙溶液各一瓶混合后浓度必然为50%。若甲、乙和丙各一瓶混合时浓度仍然为50%,则需加水为(公斤)。故选C。78、甲、乙、丙三辆汽车分别从A地开往千里之外的B地。若乙比甲晚出发30分钟,则乙出发后2小时追上甲;若丙比乙晚出发20分钟,则丙出发后5小时追上乙。若甲出发10分钟后乙出发,当乙追上甲时,丙才出发,则丙追上甲所需时间是()。
A、110分钟
B、150分钟
C、127分钟
D、128分钟
【答案】:答案:B
解析:设甲、乙、丙三辆汽车的速度分别为x、y、z。由于甲行驶30分钟的路程,乙需要2小时才能追上,则30x=(y-x)×2×60,化简得x∶y=4∶5。又因乙行驶20分钟的路程,丙需要5小时才能追上,则20y=(z-y)×5×60,化简得y∶z=15∶16。所以三辆汽车的速度x∶y∶z=12∶15∶16。赋值甲、乙、丙的速度分别为12、15、16,甲出发10分钟后乙出发,则乙追上甲的时间为(分钟),故丙出发时甲已经行驶10+40=50(分钟),设丙追上甲所需时间是t分钟,可得方程12×50=(16-12)×t,解得t=150。故选B。79、1,2,9,64,()
A、250
B、425
C、625
D、650
【答案】:答案:C
解析:10,21,32,43,(54)=625。故选C。80、一件商品相继两次分别按折扣率为10%和20%进行折扣,已知折扣后的售价为540元,那么折扣前的售价为()。
A、600元
B、680元
C、720元
D、750元
【答案】:答案:D
解析:设原售价为x元,利用“折扣后售价为540元”得x(1-10%)(1-20%)=540。解得x=750。故选D。81、2,3,13,175,()
A、30625
B、30651
C、30759
D、30952
【答案】:答案:B
解析:第一项乘以2,然后加第二项的平方等于第三项。2×2+3×3=13。第二项乘以2,然后加第三项的平方等于第四项。3×2+13×13=175。第三项乘以2,然后加第四项的平方等于第五项。13×2+175×175=30651。故选B。82、7,7,9,17,43,()
A、119
B、117
C、123
D、121
【答案】:答案:C
解析:依次将相邻两项做差得0,2,10,26,再次做差得2,6,18。构成一个公比为3的等比数列,即所填数字为43+26+18×3=123。故选C。83、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。84、4,8,28,216,()
A、6020
B、2160
C、4200
D、4124
【答案】:答案:A
解析:4×(8-1)=28,8×(28-1)=216,即所填数字为28×(216-1)=6020。故选A。85、21,27,40,61,94,148,()
A、239
B、242
C、246
D、252
【答案】:答案:A
解析:依次将相邻两项作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是连续自然数的平方。即所填数字为42+21+54+148=239。故选A。86、2,7,13,20,25,31,()
A、35
B、36
C、37
D、38
【答案】:答案:D
解析:依次将相邻两个数中后一个数减去前一个数得5,6,7,5,6,为(5,6,7)三个数字组成的循环数列,即所填数字为31+7=38。故选D。87、有一1500米的环形跑道,甲,乙二人同时同地出发,若同方向跑,50分钟后甲比乙多跑一圈,若以反方向跑,2分钟后二人相遇,则乙的速度为()。
A、330米/分钟
B、360米/分钟
C、375米/分钟
D、390米/分钟
【答案】:答案:B
解析:同向追及50分钟后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分钟后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分钟)。故选B。88、1,1,2,6,24,()
A、11
B、50
C、80
D、120
【答案】:答案:D
解析:依次将相邻两个数中后一个数除以前一个数得1,2,3,4,为连续自然数列,即所填数字为24×5=120。故选D。89、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。90、9,20,42,86,(),350
A、172
B、174
C、180
D、182
【答案】:答案:B
解析:20=9×2+2,42=20×2+2,86=42×2+2,第一项×2+2=第二项,即所填数字为86×2+2=174。故选B。91、有一架天平,只有5克和30克的砝码各一个。现在要用这架天平把300克味精平均分成3份,那么至少需要称多少次?()
A、3次
B、4次
C、5次
D、6次
【答案】:答案:A
解析:第1次,用30克和5克砝码称出35克味精;第2次,再35克味精作为砝码,和30克砝码一起称出65克味精,此时已称出100克味精;第3次,用100克味精作为砝码称出100克味精,还剩100克。把300克味精平均分为3份。故“至少”需要3次。故选A。92、甲乙丙三人参加一项测试,三人的平均分为80,甲乙两人的平均分为75,乙丙两人的平均分为80,那么甲丙两人的平均分为()。
A、70
B、75
C、80
D、85
【答案】:答案:D
解析:甲乙丙、甲乙的平均分分别为80、75,可知丙的分数大于80分;甲乙丙、乙丙的平均分分别为80、80,可知甲的分数为80分。则甲丙平均分大于80分。故选D。93、6,3,5,13,2,63,()
A、-36
B、-37
C、-38
D、-39
【答案】:答案:B
解析:6×3-5=13,3×5-13=2,5×13-2=63,第四项=第一项×第二项-第三项,即所填数字为13×2-63=-37。故选B。94、119,83,36,47,()
A、-37
B、-11
C、11
D、37
【答案】:答案:B
解析:119=83+36,83=36+47,即所填数字为36-47=-11。故选B。95、2,14,84,420,1680,()
A、2400
B、3360
C、4210
D、5040
【答案】:答案:D
解析:两两做商得到7,6,5,4,按此规律下一项为3,所以所求项为1680×3=5040。故选D。96、13,14,16,21,(),76
A、23
B、35
C、27
D、22
【答案】:答案:B
解析:相连两项相减:1,2,5,();再减一次:1,3,9,27;()=14;21+14=35。故选B。97、要将浓度分别为20%和5%的A、B两种食盐水混合配成浓度为15%的食盐水900克,问5%的食盐水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:设需要5%的食盐水x克,则需要20%的食盐水(900-x)克;根据混合后浓度为15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故选C。98、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填数字应为(136+1)×5=685。故选A。99、140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则有一队不用比赛直接进人下—轮。问夺冠的球队至少要参加几场比赛? ()
A、3
B、4
C、5
D、6
【答案】:答案:B
解析:根据题意,如果是奇数队的话,有一队轮空,自动进入下一场。题目问冠军至少需要参加几场比赛,为了让冠军参加的场次尽可能的少,每次轮空自动进入下一场的都是冠军。整个比赛过程为:140-70-35-18-9-5-3-2-1,需要进行8轮,有4轮是轮空的。所以冠军至少需要进行4场比赛。故选B。100、4,5,9,18,34,()
A、59
B、37
C、46
D、48
【答案】:答案:A
解析:该数列的后项减去前项得到一个平方数列,故空缺处应为34+25=59。故选A。101、1,1,2,6,24,()
A、11
B、50
C、80
D、120
【答案】:答案:D
解析:依次将相邻两个数中后一个数除以前一个数得1,2,3,4,为连续自然数列,即所填数字为24×5=120。故选D。102、某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少生产100套;如果每天生产23套服装,就可超过订货任务20套。那么,这批服装的订货任务是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由题意每天生产多出3套,总共就会多生产出120,那么计划的天数为40天,所以这批服装为20×40+100=900(套)。故选C。103、8,4,8,10,14,()
A、22
B、20
C、19
D、24
【答案】:答案:C
解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。104、某人租下一店面准备卖服装,房租每月1万元,重新装修花费10万元。从租下店面到开始营业花费3个月时间。开始营业后第一个月,扣除所有费用后的纯利润为3万元。如每月纯利润都比上月增加2000元而成本不变,问该店在租下店面后第几个月内收回投资?()
A、7
B、8
C、9
D、10
【答案】:答案:A
解析:由题意可得租下店面前3个月成本为1×3+10=13(万元),租下店面第4个月开始营业,营业后各月获得的纯利润构成首项为3万元、公差为0.2万元的等差数列:3万元、3.2万元、3.4万元、3.6万元。由3+3.2+3.4+3.6=13.2>13,即第7个月收回投资。故选A。105、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相邻两项后一项除以前一项的商构成连续的质数列,即所填数字为210×11=2310。故选B。106、2,3,5,7,()
A、8
B、9
C、11
D、12
【答案】:答案:C
解析:2,3,5,7,为连续的质数数列,7后面质数为11,则所求项为11。故选C。107、95,88,71,61,50,()
A、40
B、39
C、38
D、37
【答案】:答案:A
解析:95-9-5=81,88-8-8=72,71-7-1=63,61-6-1=54,50-5-0=45,40-4-0=36,其中81,72,63,54,45,36等差。故选A。108、把一根钢管锯成5段需要8分钟,如果把同样的钢管锯成20段需要多少分钟?()
A、32分钟
B、38分钟
C、40分钟
D、152分钟
【答案】:答案:B
解析:把一根钢管锯成5段需要锯4次,所以每锯一次需要8÷4=2(分钟)。则锯20段需要锯19次,所需的时间为19×2=38(分钟)。故选B。109、2,2,6,14,34,()
A、82
B、50
C、48
D、62
【答案】:答案:A
解析:2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82。故选A。110、如果现在是18点整,那么分针旋转1990圈之后是几点钟?()
A、16
B、17
C、18
D、19
【答案】:答案:A
解析:分针旋转1圈为一小时,所以分针旋转12圈,时针旋转1圈,仍为18点整。由“1990÷12=165余10”可知,此时时钟表示的时间应是16点整。故选A。111、一艘轮船从甲地到乙地每小时航行30千米,然后按原路返回,若想往返的平均速度为每小时40千米,则返回时每小时航行()千米。
A、80
B、75
C、60
D、96
【答案】:答案:C
解析:设甲乙两地的距离为1,则轮船从甲地到乙地所用的时间为1/30,如果往返的平均速度为40千米,则往返一次所用的时间为2/40,那么从乙地返回甲地所用时间为2/40-1/30=1/60,所以返回时的速度为每小时1/(1/60)=60千米。故选C。112、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。113、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()
A、15
B、13
C、10
D、8
【答案】:答案:B
解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。114、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。115、一项考试共有35道试题,答对一题得2分,答错一题扣1分,不答则不得分。一名考生一共得了47分,那么,他最多答对()题。
A、26
B、27
C、29
D、30
【答案】:答案:B
解析:设答对了x道,答错y道,则可知2x-y=47,存在没答题目的情况,因此x+y≤35。题干问最多答对题数,则从最大的开始代入。D选项,x=30,代入2x-y=47,解得y=13,此时x+y超过35,不符;C项x=29,y=11,此时x+y超过35,不符;B项x=27,y=7,剩余1道没答,符合题意。故选B。116、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。117、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原数列各项可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分数字作差后构成等比数列,后半部分作差后构成等差数列。因此未知项为4733。故选B。118、1806,1510,1214,918,()
A、724
B、722
C、624
D、622
【答案】:答案:D
解析:百位和千位看做一个数列,是18,15,12,9,构成公差为-3的等差数列,所以下一项应为6;十位和个位看做一个数列,是06,10,14,18,构成公差为4的等差数列,所以下一项应为22。故未知项应为622。故选D。119、某机构调查居民订阅报纸的情况,发现30%的家庭订阅了日报,35%的家庭订阅了早报,45%的家庭订阅了晚报,10%的家庭没有订阅任何一种报纸,若每个家庭都不会同时订早报和晚报,则同时订阅日报和早报的家庭的比例在多少范围之内?()
A、0~10%
B、10%~20%
C、0~20%
D、20%~30%
【答案】:答案:C
解析:根据“都不会同时订阅”可知,同时订三种报纸的为0。设同时订阅日报和早报的为x,同时订阅日报和晚报的为y。根据三集合容斥原理得:100%=30%+35%+45%-x-y-0+0+10%,解得x+y=20%。因此x在0~20%之间。故选C。120、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。121、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。122、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。123、1/2,1,1,(),9/11,11/13
A、2
B、3
C、1
D、9
【答案】:答案:C
解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13连续质数列。故选C。124、6,3,5,13,2,63,()
A、-36
B、-37
C、-38
D、-39
【答案】:答案:B
解析:6×3-5=13,3×5-13=2,5×13-2=63,第四项=第一项×第二项-第三项,即所填数字为13×2-63=-37。故选B。125、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。126、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。127、5,4,10,8,15,16,(),()
A、20,18
B、18,32
C、20,32
D、18,36
【答案】:答案:C
解析:从题干中给出的数字不难看出,奇数项5,10,15,(20)构成公差为5的等差数列,偶数项4,8,16,(32)构成公比为2的等比数列。故选C。128、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。129、1,6,36,216,()
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:公比为6的等比数列。故选A。130、6,6,12,36,()
A、124
B、140
C、144
D、164
【答案】:答案:C
解析:两两相除。6/6=1,6/12=1/2,12/36=1/3,下个数为36/()=1/4。故选C。131、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N项=第N-1项+…+第一项,即所填数字为1+2+3+6+12+24=48。故选A。132、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。133、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三项=第二项×2+第一项,99=41×2+17。故选B。134、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。135、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。136、把一根钢管锯成5段需要8分钟,如果把同样的钢管锯成20段需要多少分钟?()
A、32分钟
B、38分钟
C、40分钟
D、152分钟
【答案】:答案:B
解析:把一根钢管锯成5段需要锯4次,所以每锯一次需要8÷4=2(分钟)。则锯20段需要锯19次,所需的时间为19×2=38(分钟)。故选B。137、8,4,8,10,14,()
A、22
B、20
C、19
D、24
【答案】:答案:C
解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。138、某班有56名学生,每人都参加了a、b、c、d、e五个兴趣班中的一个。已知有27人参加a兴趣班,参加b兴趣班的人数第二多,参加c、d兴趣班的人数相同,e兴趣班的参加人数最少,只有6人,问参加b兴趣班的学生有多少个?()
A、7个
B、8个
C、9个
D、10个
【答案】:答案:C
解析:设b班人数为x,c、d班的人数均为y,由b班人数第二多,e班人数最少,可知各班人数关系为:27>x>y>6。该班有56名学生,56=27+x+y+y+6,即x+2y=23,其中2y是偶数,23为奇数,则x为奇数,排除B、D。代入A选项,当x=7时,y=8,则x<Y,不符合题意,排除。故选C。139、3,6,11,(),27
A、15
B、18
C、19
D、24
【答案】:答案:B
解析:相邻两项后一项减前一项,6-3=3,11-6=5,18-11=7,27-18=9,构成公差为2的等差数列。即所填数字为11+7=18,27-9=18。故选B。140、A、B、C三个试管中各盛有10克、20克、30克水,把某种浓度的盐水10克倒入A中,充分混合后从A中取出10克倒入B中,再充分混合后从B中取出10克倒入C中,最后得到C中盐水的浓度为0.5%。则开始倒入试管A中的盐水浓度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含盐量为(30+10)×0.5%=0.2克,即从B中取出的10克中含盐0.2克,则B的浓度为0.2÷10=2%,进而求出B中含盐量为(20+10)×2%=0.6克,即从A中取出的10克中含盐0.6克,可得A的浓度为0.6÷10=6%,进一步得出A中含盐量为(10+10)×6%=1.2克,故开始倒入A中的盐水浓度为1.2÷10=12%。故选A。141、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。142、小孙的口袋里有四颗糖,一颗巧克力味的,一颗苹果味的,两颗牛奶味的。小孙任意从口袋里取出两颗糖,他看了看后说,其中一颗是牛奶味的。问小孙取出的另一颗糖也是牛奶味的可能性(概率)是多少?()
A、1/3
B、1/4
C、1/5
D、1/6
【答案】:答案:C
解析:两颗都是牛奶味的糖只有一种情况,而其中至少一颗是牛奶味的糖共有5种情况:(牛奶味1、苹果味),(牛奶味1、巧克力味),(牛奶味2、苹果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的另一颗糖也是牛奶味的概率为1/5。故选C。143、2,4,10,18,28,(),56
A、32
B、42
C、52
D、54
【答案】:答案:B
解析:因式分解数列。2=1×2,4=1×4,10=2×5,18=3×6,28=4×7,()=?×?,56=7×8,每一项的两个因子之和分别为3、5、7、9、11、()、15,构成公差为2的等差数列。由此可知,空缺项的两个因子的和为13,结合选项,只有B项的42=6×7分解后两个因子的和为13。故选B。144、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次将相邻两个数中后一个数减去前一个数,构成公差为11的等差数列,即所填的数字为56+11=67。故选B。145、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。146、80×35×15的值是()。
A、42000
B、36000
C、33000
D、48000
【答案】:答案:A
解析:如果直接进行计算,不免有些麻烦,但我们可以很容易发现45和15都有5这个因子,这其中又有80,所以我们可以对采用凑整法来进行处理。原式=80×9×5×5×3=80×25×27=2000×27=54000。本题运用了整除法。题干中有35,所以结果应有7这个因子,其应为7所整除,观察选项。故选A。147、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。148、-13,19,58,106,165,()
A、189
B、198
C、232
D、237
【答案】:答案:D
解析:二级等差。(即作差2次后,所得相同)。故选D。149、某单位组织工会活动,30名员工自愿参加做游戏。游戏规则:按1~30号编号并报数,第一次报数后,单号全部站出来,然后每次余下的人中第一个开始站出来,隔一人站出来一个人。最后站出来的人给大家唱首歌。那么给大家唱歌的员工编号是()。
A、14
B、16
C、18
D、20
【答案】:答案:B
解析:第一次报数后,单号全部站出来,剩余号码为2、4、6、8、10······30,均为2的倍数;每次余下的人中第一个开始站出来,隔一人站出来一个人,剩余号码为4、8、12、16、20、24、28,均为4的倍数;再从余下的号码中第一个人开始站出来,隔一个人站出来一个人,剩余号码为8、16、24,均为8的倍数;重复上一次的步骤,剩余16号,为16的倍数。1—30中16的倍数只有16。故选B。150、商店购入一百多件A款服装,其单件进价为整数元,总进价为1万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A款服装?()
A、13
B、15
C、17
D、19
【答案】:答案:C
解析:推出A款服装有125件,进价为80元,B款服装进价为80×0.75=60(元),B款服装定价为60×1.6=96(元),利润为96-60=36(元),A款服装利润为36×2=7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度基础地质勘查服务竞争策略分析报告
- 二零二五年度违约民事起诉状合同起草技巧与法律适用3篇
- 2024-2025学年新教材高中数学第十章概率单元质量评估含解析新人教A版必修第二册
- 2025年度文化旅游项目招投标与合同管理规范解读3篇
- 2024金融行业拓展训练合同
- 2025年度新能源居间服务合同范本英文版3篇
- 二零二五年度留守儿童特殊教育需求与个性化支持服务合同4篇
- 2025年度高科技企业派遣研发人员合同范本
- 2025版高性能铝合金模板制造与租赁服务合同详尽条款全文4篇
- 2025年度家庭经济困难子女抚养费减免专项合同
- 铺大棚膜合同模板
- 长亭送别完整版本
- 《铁路轨道维护》课件-更换道岔尖轨作业
- 股份代持协议书简版wps
- 职业学校视频监控存储系统解决方案
- 《销售心理学培训》课件
- 2024年安徽省公务员录用考试《行测》真题及解析
- 你比我猜题库课件
- 丰顺县乡镇集中式饮用水水源地基础状况调查和风险评估报告
- 无人驾驶航空器安全操作理论复习测试附答案
- 2024年山东省青岛市中考语文试卷(附答案)
评论
0/150
提交评论