专题04 集合与常用逻辑用语(能力测评卷)-2020-2021学年高一数学单元复习(人教A版2019必修第一册)_第1页
专题04 集合与常用逻辑用语(能力测评卷)-2020-2021学年高一数学单元复习(人教A版2019必修第一册)_第2页
专题04 集合与常用逻辑用语(能力测评卷)-2020-2021学年高一数学单元复习(人教A版2019必修第一册)_第3页
专题04 集合与常用逻辑用语(能力测评卷)-2020-2021学年高一数学单元复习(人教A版2019必修第一册)_第4页
专题04 集合与常用逻辑用语(能力测评卷)-2020-2021学年高一数学单元复习(人教A版2019必修第一册)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

章末检测(一)集合与常用逻辑用语◎◎◎◎◎◎能力测评卷◎◎◎◎◎◎(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={1,2,3},B={x|-1<x<2,x∈Z},则A∪B=()A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}【答案】C【解析】因为A={1,2,3},B={x|-1<x<2,x∈Z}={0,1},所以A∪B={0,1,2,3},故选C.2.已知全集U=R,设集合A={x|x≥1},集合B={x|x≥2},则A∩(∁UB)=()A.{x|1≤x≤2} B.{x|1<x<2}C.{x|1<x≤2} D.{x|1≤x<2}【答案】D【解析】∵B={x|x≥2},∴∁UB={x|x<2}.又A={x|x≥1},∴A∩(∁UB)={x|1≤x<2}.3.“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件【答案】A【解析】∵“”⇒“”,“”⇒“或”,∴“”是“”的充分不必要条件.故选A.4.命题“关于x的方程ax2-x-2=0在(0,+∞)上有解”的否定是()A.∃x∈(0,+∞),ax2-x-2≠0B.∀x∈(0,+∞),ax2-x-2≠0C.∃x∈(-∞,0),ax2-x-2=0D.∀x∈(-∞,0),ax2-x-2=0【答案】B【解析】原命题即“∃x∈(0,+∞),ax2-x-2=0”,其否定为“∀x∈(0,+∞),ax2-x-2≠0”.5.若集合A={-3,-2,-1,0,1,2},集合B={y|y=|x+1|,x∈A},则B=()A.{1,2,3} B.{0,1,2}C.{0,1,2,3} D.{-1,0,1,2,3}【答案】C【解析】由y=|x+1|,x∈A,知当x=-3,1时,y=2;当x=-2,0时,y=1;当x=-1时,y=0;当x=2时,y=3.故得集合B={0,1,2,3},故选C.6.2019年文汇高中学生运动会,某班62名学生中有一半的学生没有参加比赛,参加比赛的学生中,参加田赛的有16人,参加径赛的有23人,则田赛和径赛都参加的学生人数为()A.7 B.8C.10D.12【答案】B【解析】由题可得参加比赛的学生共有31人,因为card(A∪B)=card(A)+card(B)-card(A∩B),所以田赛和径赛都参加的学生人数为16+23-31=8.故选B.7.设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=()A.{1,-3} B.{1,0}C.{1,3} D.{1,5}【答案】C【解析】因为A∩B={1},所以1∈B,所以1是方程x2-4x+m=0的根,所以1-4+m=0,m=3,方程为x2-4x+3=0,解得x=1或x=3,所以B={1,3}.故选C.8.设全集U={x||x|<4,且x∈Z},S={-2,1,3},若P⊆U,(∁UP)⊆S,则这样的集合P共有()A.5个 B.6个C.7个 D.8个【答案】D【解析】U={-3,-2,-1,0,1,2,3},∵∁U(∁UP)=P,∴存在一个∁UP,即有一个相应的P(如当∁UP={-2,1,3}时,P={-3,-1,0,2};当∁UP={-2,1}时,P={-3,-1,0,2,3}等).由于S的子集共有8个,∴P也有8个,选D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.下列命题正确的是()A.存在x<0,x2-2x-3=0B.对于一切实数x<0,都有|x|>xC.∀x∈R,=xD.已知an=2n,bm=3m,对于任意n,m∈N*,an≠bm【答案】AB【解析】因为x2-2x-3=0的根为x=-1或3,所以存在x0=-1<0,使-2x0-3=0,故A为真命题;B显然为真命题;因为=|x|,故C为假命题;当n=3,m=2时,a3=b2,故D为假命题.10.命题“∀1≤x≤3,x2-a≤0”是真命题的一个充分不必要条件是()A.a≥9 B.a≥11C.a≥10 D.a≤10【答案】BC【解析】当该命题是真命题时,只需当1≤x≤3时,a≥(x2)max.因为1≤x≤3时,y=x2的最大值是9,所以a≥9.因为a≥9a≥10,a≥10⇒a≥9,又a≥9a≥11,a≥11⇒a≥9,选B、C.11.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有两个子集,则a的值是()A.1 B.-1C.0 D.2【答案】ABC【解析】因为集合A有且仅有2个子集,所以A仅有一个元素,即方程ax2+2x+a=0(a∈R)仅有一个根.①当a=0时,方程化为2x=0,此时A={0},符合题意.②当a≠0时,由Δ=22-4·a·a=0,即a2=1,所以a=±1.此时A={-1}或A={1},符合题意.综上,a=0或a=±1.12.设P是一个数集,且至少含有两个元素.若对任意的a,b∈P,都有a+b,a-b,ab,∈P(除数b≠0),则称P是一个数域,例如有理数集Q是一个数域,有下列说法,其中正确的是()A.数域必含有0,1两个数B.整数集是数域C.若有理数集Q⊆M,则数集M必为数域D.数域必为无限集【答案】AD【解析】数集P有两个元素m,n,则一定有m-m=0,=1(设m≠0),A正确;因为1∈Z,2∈Z,∉Z,所以整数集不是数域,B不正确;令数集M=Q∪{},则1∈M,∈M,但1+∉M,所以C不正确;数域中有1,一定有1+1=2,1+2=3,递推下去,可知数域必为无限集,D正确.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.命题“∀x∈R,x2-2x+1≥0”的否定是________.【答案】∃x∈R,x2-2x+1<0【解析】该命题为全称量词命题,其否定命题为存在量词命题:∃x∈R,x2-2x+1<0.14.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且N⃘M,则a的取值为________.【答案】4【解析】①若a=3,则a2-3a-1=-1,即M={1,2,3,-1},显然N⊆M,不合题意.②若a2-3a-1=3,即a=4或a=-1.当a=-1时,N⊆M,舍去.当a=4时,M={1,2,4,3},满足要求.15.已知p:-1<x<3,q:-1<x<m+1,若q是p的必要不充分条件,则实数m的取值范围是________.【答案】{m|m>2}【解析】由p:-1<x<3,q:-1<x<m+1,q是p的必要不充分条件,即3<m+1,即m>2.16.(一题两空)已知集合A={x|-3<x≤6},B={x|b-3<x<b+7},M={x|-4≤x<5},全集U=R.(1)A∩M=________;(2)若B∪(∁UM)=R,则实数b的取值范围为________.【答案】(1){x|-3<x<5}(2){b|-2≤b<-1}【解析】(1)因为A={x|-3<x≤6},M={x|-4≤x<5},所以A∩M={x|-3<x<5}.(2)因为M={x|-4≤x<5},所以∁UM={x|x<-4或x≥5},又B={x|b-3<x<b+7},B∪(∁UM)=R.所以,解得-2≤b<-1.所以实数b的取值范围是{b|-2≤b<-1}.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)下列命题中,判断p是q的什么条件,并说明理由.(1)p:|x|=|y|,q:x=y;(2)p:△ABC是直角三角形,q:△ABC是等腰三角形;(3)p:四边形的对角线互相平分,q:四边形是矩形.【解析】(1)∵|x|=|y|x=y,但x=y⇒|x|=|y|,∴p是q的必要条件,但不是充分条件.(2)∵△ABC是直角三角形△ABC是等腰三角形,△ABC是等腰三角形△ABC是直角三角形,∴p既不是q的充分条件,也不是q的必要条件.(3)∵四边形的对角线互相平分四边形是矩形,四边形是矩形⇒四边形的对角线互相平分,∴p是q的必要条件,但不是充分条件.18.(本小题满分12分)若一个数集中任何一个元素的倒数仍是该数集中的元素,则称该数集为“可倒数集”.(1)判断集合A={-1,1,2}是否为可倒数集;(2)试写出一个含3个元素的可倒数集.【解析】(1)由于2的倒数为,不在集合A中,故集合A不是可倒数集.(2)若a∈B,则必有∈B,现已知集合B中含有3个元素,故必有1个元素a=,即a=±1.故可以取集合B=或或等.19.(本小题满分12分)已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分别求满足下列条件的a的值.(1)9∈(A∩B);(2){9}=A∩B.【解析】(1)∵9∈(A∩B),∴9∈B且9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.检验知a=5或a=-3.(2)∵{9}=A∩B,∴9∈(A∩B),∴a=5或a=-3.当a=5时,A={-4,9,25},B={0,-4,9},此时A∩B={-4,9},与A∩B={9}矛盾,故舍去;当a=-3时,A={-4,-7,9},B={-8,4,9},A∩B={9},满足题意.综上可知a=-3.20.(本小题满分12分)已知集合A={x|a≤x≤a+3},B={x|x<-6或x>1}.(1)若A∩B=∅,求a的取值范围;(2)若A∪B=B,求a的取值范围.【解析】(1)因为A∩B=∅,所以,解得-6≤a≤-2,所以a的取值范围是{a|-6≤a≤-2}.(2)因为A∪B=B,所以A⊆B,所以a+3<-6或a>1,解得a<-9或a>1,所以a的取值范围是{a|a<-9或a>1}.21.(本小题满分12分)已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<a},全集为实数集R.(1)求A∪B,(∁RA)∩B;(2)若A∩C≠∅,求a的取值范围.【解析】(1)∵A={x|3≤x<7},B={x|2<x<10},∴A∪B={x|2<x<10}.∵A={x|3≤x<7},∴∁RA={x|x<3或x≥7},∴(∁RA)∩B={x|x<3或x≥7}∩{x|2<x<10}={x|2<x<3或7≤x<10}.(2)如图所示,当a>3时,A∩C≠∅.故a的取值范围为{a|a>3}.22.(本小题满分12分)已知集合A={x|x2+4x=0,x∈R},B={x|x2+2(a+1)x+a2-1=0,x∈R},若B⊆A,求实数a的取值范围.【解析】A={x|x2+4x=0,x∈R}={0,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论