二元一次方程组的应用例题-解方程必背公式-方程应用题及答案60道_第1页
二元一次方程组的应用例题-解方程必背公式-方程应用题及答案60道_第2页
二元一次方程组的应用例题-解方程必背公式-方程应用题及答案60道_第3页
二元一次方程组的应用例题-解方程必背公式-方程应用题及答案60道_第4页
二元一次方程组的应用例题-解方程必背公式-方程应用题及答案60道_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二元一次方程组的应用二元一次方程组应用中常见的相等关系:

1.行程问题(匀速运动)

基本关系:s=vt

①相遇问题(同时出发):

确定行程过程中的位置路程

相遇路程÷速度和=相遇时间

相遇路程÷相遇时间=速度和

相遇问题(直线)

甲的路程+乙的路程=总路程

相遇问题(环形)

甲的路程+乙的路程=环形周长

②追及问题(同时出发):

追及时间=路程差÷速度差

速度差=路程差÷追及时间

追及时间×速度差=路程差

追及问题(直线)

距离差=追者路程-被追者路程=速度差X追及时间

追及问题(环形)

快的路程-慢的路程=曲线的周长

③水中航行

顺水行程=(船速+水速)×顺水时间

逆水行程=(船速-水速)×逆水时间

顺水速度=船速+水速

逆水速度=船速-水速

静水速度=(顺水速度+逆水速度)÷2

水速:(顺水速度-逆水速度)÷2

2.配料问题:溶质=溶液×浓度

溶液=溶质+溶剂

3.增长率问题

4.工程问题

基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。

5.几何问题

①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

②注意语言与解析式的互化:

如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……

又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。

③注意从语言叙述中写出相等关系:如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。

④注意单位换算:

如,“小时”“分钟”的换算;s、v、t单位的一致等。二元一次方程组的应用:

列方程(组)解应用题是中学数学联系实际的一个重要方面。

其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。解方程应用题及答案:1、A有书的本数是B有书的本数的3倍,A、B两人平均每人有82本书,求A、B两人各有书多少本。解:设B有书x本,则A有书3x本X+3X=82×22、一只两层书架,上层放的书是下层的3倍,如果把上层的书搬60本到下层,那么两层的书一样多,求上、下层原来各有书多少本.解:设下层有书X本,则上层有书3X本3X-60=X+603、有A、B两缸金鱼,A缸的金鱼条数是B缸的一半,如从B缸里取出9条金鱼放人A缸,这样两缸鱼的条数相等,求A缸原有金鱼多少条.解:设B缸有X条,则A缸有1/2X条X-9=1/2X+94、汽车从A地到B地,去时每小时行60千米,比计划时间早到1小时;返回时,每小时行40千米,比计划时间迟到1小时.求AB两地的距离.解:设计划时间为X小时60×(X-1)=40×(X+1)5、新河口小学的同学去种向日葵,五年级种的棵数比四年级种的3倍少10棵,五年级比四年级多种62棵,两个年级各种多少棵?解:设四年级种树X棵,则五年级种(3X-10)棵(3X-10)-X=626、熊猫电视机厂生产一批电视机,如果每天生产40台,要比原计划多生产6天,如果每天生产60台,可以比原计划提前4天完成,求原计划生产时间和这批电视机的总台数.解:设原计划生产时间为X天40×(X+6)=60×(X-4)7、A仓存粮32吨,B仓存粮57吨,以后A仓每天存人4吨,B仓每天存人9吨.几天后,B仓存粮是A仓的2倍?解:设X天后,B仓存粮是A仓的2倍(32+4X)×2=57+9X8、一把直尺和一把小刀共1.9元,4把直尺和6把小刀共9元,每把直尺和每把小刀各多少元?解:设直尺每把x元,小刀每把就是(1.9—x)元4X+6×(1.9—X)=99、A、B两个粮仓存粮数相等,从A仓运出130吨、从B仓运出230吨后,A粮仓剩粮是B粮仓剩粮的3倍,原来每个粮仓各存粮多少吨?解:设原来每个粮仓各存粮X吨X-130=(X-230)×310、师徒俩要加工同样多的零件,师傅每小时加工50个,比徒弟每小时多加工10个.工作中师傅停工5小时,因此徒弟比师傅提前1小时完成任务.求两人各加工多少个零件.解:设两人各加工X个零件X/(50-40)=X/50+5-111、买2.5千克苹果和2千克橘子共用去13.6元,已知每千克苹果比每千克橘子贵2.2元,这两种水果的单价各是每千克多少元?解:设橘子每千克X元,则苹果每千克(X+2.2)元12、买4支钢笔和9支圆珠笔共付24元,已知买2支钢笔的钱可买3支圆珠笔,两种笔的价钱各是多少元?解:设钢笔每支X元,则圆珠笔每支2X/34X+9×2X/3=2413、一个两位数,个位上的数字是十位上数字的2倍,如果把十位上的数字与个位上的数字对调,那么得到的新两位数比原两位数大36.求原两位数.解:设十位上数字为X,则个位上的数字为2X,这个原两位

数为(10X+2X)10×2X+X=(10X+2X)+3614、一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字的和是这个两位数的0.2倍.求这个两位数.解:设个位数字为X,则十位数字为(X-1)15、有四只盒子,共装了45个小球.如变动一下,第一盒减少2个;第二盒增加2个;第三盒增加一倍;第四盒减少一半,那么这四只盒子里的球就一样多了.原来每只盒子中各有几个球?解:设现在每只盒子中各有x个球,原来各盒中球的个数分别为(x—2)个、(x+2)个、(x÷2)个、2x个(x—2)+(x+2)+(x÷2)+2x=4516、25除以一个数的2倍,商是3余1,求这个数.解:设这个数为X(25-1)÷2X=317、A、B分别从相距18千米的A、B两地同时同向而行,B在前A在后.当A追上B时行了1.5小时.B车每小时行48千米,求A车速度.解:设A车速度为X小时/小时(X-48)×1.5=1818、A、B两车同时由A地到B地,A车每小时行30千米,B车每小时行45千米,A车先出发2小时后B车才出发,两车同时到达B地.求A、B两地的距离.解:设A、B两地的距离为X千米(X-30×2)/30=X/4519、师徒俩加工同一种零件,徒弟每小时加工12个,工作了3小时后,师傅开始工作,6小时后,两人加工的零件同样多,师傅每小时加工多少个零件.解:设师傅每小时加工X个零件6X=12×(3+6)20、有A、B两桶油,A桶油再注入15升后,两桶油质量相等;如B桶油再注人145升,则B桶油的质量是A桶油的3倍,求原来两桶油各有多少升.解:设A桶原来有X升油,则B桶原来有(X-15)升油X+15+145=3X21、一个工程队由6个粗木工和1个细木工组成.完成某项任务后,粗木工每人得200元,细木工每人工资比全队的平均工资多30元.求细木工每人得多少元.解:设细木工每人得X元(200×6+X)/(6+1)=X-30如何解方程应用题?列方程解答应用题的步骤①弄清题意,确定未知数并用x表示;②找出题中的数量之间的相等关系;③列方程,解方程;④检查或验算,写出答案。列方程解应用题的方法综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论