版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE年月日第页共页第2页共2页考卷一第1页共2页考试时间:110分钟考试形式:闭卷学生自带普通计算器:允许一、单项选择题(本大题共5小题,每小题2分,总计10分)1.下列性能中哪个不是自动控制系统的基本性能要求()。A.准确性 B.稳定性 C.平稳性 D.快速性2.系统稳定的充分必要条件是其所有的()在s平面左半平面。A.闭环极点 B.开环极点 C.闭环零点 D.开环零点3.用频域法分析控制系统时,最常用的典型输入信号是()。A.脉冲信号 B.斜坡信号 C.阶跃信号 D.正弦信号4.下列哪种措施对提高系统的稳定性没有效果()。A、增加开环极点;B、在积分环节外加单位负反馈;C、增加开环零点;D、引入串联超前校正装置。5.当采样频率和最高次谐波角频率满足()时,采样信号可无失真地恢复原信号。A. B. C. D.二、判断题(本大题共5小题,每小题2分,总计10分)1.当时,二阶系统处于临界阻尼状态。 ()2.根轨迹画得是系统闭环极点的轨迹。 ()3.奈奎斯特图又称对数频率特性曲线。 ()4.最小相位系统在s右半平面既没有闭环零点也没有闭环极点。 ()5.离散系统稳定的充要条件是其所有的开环极点都在单位圆内。 ()三、(25分)已知系统的结构图如下图所示(1)求系统的闭环传递函数;(2)当,,,,时,求系统的闭环传递函数,并判断其稳定性。四、(15分)已知单位负反馈系统的开环传递函数,绘制系统的根轨迹。五、(25分)某控制系统及其串联校正装置的对数幅频特性如图中所示和所示。(1)求控制系统、校正装置、校正后系统的开环传递函数;(2)绘制校正后系统的伯德图;六、(15分)某离散系统结构如图所示,采样周期T=0.1s,(1)求系统的开环脉冲传递函数和闭环脉冲传递函数;(2)判断K=10时系统的稳定性。附:常见z变换,
一、(10分)答案(本大题共5小题,每小题2分,答错、不答、多答均不得分)1.C2.A3.D4.A5.D二、(10分)答案(本大题共5小题,每小题2分,答错、不答均不得分)1.X2.√3.X4.X5.X三、(25分)答案(根据答题要点给分,答对给相应分数,不答或答错不给分)(1)采用梅逊公式求解:图中有2条前向通路,2个回路。P1=G1G2G3,Δ1=1 P2=G4,Δ2=1+G1G2H1+Δ=1+G1G2H1+G2G3H2 Φ(s)=G1G2G3+G4+G或采用等效变换法求解: (2分) (4分) (4分)得到传递函数为Φ(s)=G1G(2)将G1=1s+1,G2=1Φ(s)=s3+2s2+4s+4s3+3s2+4s+3 根据系统的闭环传递函数分母的系数,列劳斯表s劳斯表第一列未发生变号,系统稳定。 (5分)四、(15分)答案(根据答题要点给分,答对给相应分数,不答或答错不给分)(1)n=3,m=0,有3条根轨迹分支,终止于无穷远处 (2分)(2)实轴上的根轨迹段为(-∞,-10],[-8,0] (3)渐近线σa=-5-83=-4.33(4)分离点A'B-AB'=0⇒(5)系统特征方程D(s)=s求得K=520,ω=±210j (5分)五、(25分)答案(根据答题要点给分,答对给相应分数,不答或答错不给分)(1)根据图示,写出控制系统的开环传递函数为G0(s)=10s(0.1s+1) 校正装置为Gc(s)=s+110s+1 因此求得校正后系统的开环传递函数为G'(s)=10(s+1)s(0.1s+1)(10s+1) (2)求出校正后系统的转折频率一阶微分环节ω1=1rad/s,一阶惯性环节ω2=0.1rad/s,ω3当ω=1rad/s时,L(ω)=20lgK=20dB 相角从-90°绘制出系统的伯德图为 (5分) (3分)六(15分)答案(根据答题要点给分,答对给相应分数,不答或答错不给分)G(z)=ZKsZ10.1s+1=Φ(z)=G(z)1+G(z)=Kz2(1+10K)z2(3)Δ(z)=101z2-1.368z+0.368,解得z试卷2考试时间:110分钟考试形式:闭卷学生自带普通计算器:允许一、单项选择题(本大题共5小题,每小题2分,总计10分)1、采用负反馈形式连接后,则()A、一定能使闭环系统稳定;B、系统动态性能一定会提高;C、一定能使干扰引起的误差逐渐减小,最后完全消除;D、需要调整系统的结构参数,才能改善系统性能。2、若某串联校正装置的传递函数为,则该校正装置属于()。A、超前校正B、滞后校正C、滞后-超前校正D、不能判断3、系统特征方程为,则系统()A、稳定;B、单位阶跃响应曲线为单调指数上升;C、临界稳定;D、右半平面闭环极点数。4、系统在作用下的稳态误差,说明()A、型别;B、系统不稳定;C、输入幅值过大;D、闭环传递函数中有一个积分环节。5.下列系统中()系统稳定。A. B. C. D.二、判断题(本大题共5小题,每小题2分,总计10分)1、反馈控制系统又称为闭环控制系统。(
)2、输出信号与输入信号的相位差随频率变化的关系是幅频特性。(
)3、如果典型二阶系统的单位阶跃响应为减幅振荡(又称阻尼振荡),则其阻尼比ξ≥1。()4、G(s)=
1/[(s+1)(s+2)(s+3)(s+4)]环节的对数相频特性的高频渐近线斜率为
-80dB。()5、某自控系统的开环传递函数G(s)=1/[(s+1)(s+2)]
,则此系统为不稳定系统。()三、(20分)设图(a)所示系统的单位阶跃响应如图(b)所示。试确定系统参数和。四、(15分)已知系统特征方程式为绘制该系统的根轨迹(10分)确定使系统稳定的值范围(5分)五、(25分)某最小相角系统的开环对数幅频特性如图所示。要求:写出系统开环传递函数;(5分)计算相角裕度,判断系统的稳定性;(10分)将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。(5分)画出该系统的相频特性。(5分)六、(20分)已知某采样系统结构图如图所示,(1)写出系统脉冲传递函数表达式。(5分)(2)若,,K=5时,试判断系统稳定性。(10分)(3),若系统输入为,求系统的稳态误差。(10分)附:常见z变换,
单项选择题(本大题共10小题,每小题1分,共10分)1、D2、B3、C4、A5、D判断正误题(本大题共10小题,每小题1分,共10分)1、√2、x3、x4、√5、x三、(20分)闭环传函为(5分)由系统阶跃响应曲线有(6分)联立求解得(3分)-2jωσ-2jωσ0-10-4-0.9j4.5-j4.5所以(4分)四、(15分)1.(以下每步骤1分,图5分)(1)、(2)实轴上根轨迹为[-∞,-10]和[-2,0]段(3)渐近线(4)分离点:由可解出(舍去)(5)与虚轴交点,,解出2、系统处于欠阻尼状态时K>240(5分)五、(25分)解(1)可以写出系统开环传递函数如下:(5分)(2)系统的开环相频特性为截止频率;相角裕度(5分)故系统稳定(5分)。(3)系统稳定性不变(3分);调节时间缩短,动态响应加快。(2分)(4)相频特性,图略。以低频、高频渐近线各1分,趋势3分。五、(20分)(1)用简易计算法,对应连续系统输出为,(1分)离散化后得(2分)所以脉冲传递函数为(2分)(2)(5分)解得特征根:。(2分)因为(2分),所以系统稳定。(1分)(3);(1分);(1分),(3分)试卷3考试时间:110分钟考试形式:闭卷学生自带普通计算器:允许一、单项选择题(本大题共5小题,每小题2分,总计10分)1.下列性能中哪个不是自动控制系统的基本性能要求()。A.准确性 B.稳定性 C.平稳性 D.快速性2.系统稳定的充分必要条件是其所有的()在s平面左半平面。A.闭环极点 B.开环极点 C.闭环零点 D.开环零点3.用频域法分析控制系统时,最常用的典型输入信号是()。A.脉冲信号 B.斜坡信号 C.阶跃信号 D.正弦信号4.下列系统中()系统稳定。A. B. C. D.5.当采样频率ωs和最高次谐波角频率ωmax满足(A.ωs≤ωmax B.ωs≤2ω二、判断题(本大题共5小题,每小题2分,总计10分)1.当ξ=0时,二阶系统处于临界阻尼状态。 ()2.根轨迹画得是系统闭环极点的轨迹。 ()3.奈奎斯特图又称对数频率特性曲线。 ()4.最小相位系统在s右半平面既没有闭环零点也没有闭环极点。 ()5.离散系统稳定的充要条件是其所有的开环极点都在单位圆内。 ()三、(25分)已知系统的结构图如下图所示(1)求系统的闭环传递函数;(2)当G1=1s+1,G2=1s,G3四、(15分)已知单位负反馈系统的开环传递函数G(s)=Ks(s+5)(s+8),五、(25分)某控制系统G0(s)及其串联校正装置Gc(s)的对数幅频特性如图中(1)求控制系统、校正装置、校正后系统的开环传递函数;(2)绘制校正后系统的伯德图;六、(15分)某离散系统结构如图所示,采样周期T=0.1s,(1)求系统的开环脉冲传递函数和闭环脉冲传递函数;(2)判断K=10时系统的稳定性。附:常见z变换Z(1s
一、(10分)答案(本大题共5小题,每小题2分,答错、不答、多答均不得分)1.C2.A3.D4.D5.D二、(10分)答案(本大题共5小题,每小题2分,答错、不答均不得分)1.X2.√3.X4.X5.X三、(25分)答案(根据答题要点给分,答对给相应分数,不答或答错不给分)(1)采用梅逊公式求解:图中有2条前向通路,2个回路。P1=G1G2G3,Δ1=1 P2=G4,Δ2=1+G1G2H1+Δ=1+G1G2H1+G2G3H2 Φ(s)=G1G2G3+G4+G或采用等效变换法求解: (2分) (4分) (4分)得到传递函数为Φ(s)=G1G(2)将G1=1s+1,G2=1Φ(s)=s3+2s2+4s+4s3+3s2+4s+3 根据系统的闭环传递函数分母的系数,列劳斯表s劳斯表第一列未发生变号,系统稳定。 (5分)四、(15分)答案(根据答题要点给分,答对给相应分数,不答或答错不给分)(1)n=3,m=0,有3条根轨迹分支,终止于无穷远处 (2分)(2)实轴上的根轨迹段为(-∞,-10],[-8,0] (3)渐近线σa=-5-83=-4.33(4)分离点A'B-AB'=0⇒(5)系统特征方程D(s)=s求得K=520,ω=±210j (5分)五、(25分)答案(根据答题要点给分,答对给相应分数,不答或答错不给分)(1)根据图示,写出控制系统的开环传递函数为G0(s)=10s(0.1s+1) 校正装置为Gc(s)=s+110s+1 因此求得校正后系统的开环传递函数为G'(s)=10(s+1)s(0.1s+1)(10s+1) (2)求出校正后系统的转折频率一阶微分环节ω1=1rad/s,一阶惯性环节ω2=0.1rad/s,ω3当ω=1rad/s时,L(ω)=20lgK=20dB 相角从-90°绘制出系统的伯德图为 (5分) (3分)六(15分)答案(根据答题要点给分,答对给相应分数,不答或答错不给分)G(z)=ZKsZ10.1s+1Φ(z)=G(z)1+G(z)=Kz2(1+10K)z(3)Δ(z)=101z2-1.368z+0.368,解得z试卷4考试时间:110分钟考试形式:闭卷学生自带普通计算器:允许一、(10分)求下图所示系统的误差传递函数二、(15分)设某单位反馈控制系统的开环传递函数为,试绘制系统的根轨迹图。c(t)t0.10c(t)t0.1034三、(15分)设二阶系统的单位阶跃响应曲线如图所示。试确定系统的传递函数。四、(10分)已知系统特征方程式为,试用劳斯判据判断系统的稳定情况。p=0v=2p=0v=2ω=0+-1ImRe0ω=+∞-1ImRe0P=2ω=0ω=+∞六、(15分)根据最小相位系统的对数幅频特性曲线写出该系统的传递函数。七、(10分)已知系统的开环传递函数是,对其进行串联超前校正,若校正后系统的剪切频率。试求校正后系统的相位裕量。八、(15分)设系统如图所示:当T=0.1s时,求系统的闭环脉冲传递函数;当K=10时,判断系统的稳定性。附:常见z变换,,
一、答案(根据答题要点给分,答对给相应分数,不答或答错不给分,解题方法不唯一)方法一:等效变换法 (2分) (2分) (2分) (4分)方法二:梅逊公式该系统有一条前向通道,三个独立的回路P1=1,-L1-L2 (2分)L1=-G2G3H1,L2=-G3G4H2,L3=-G1G2G3G4 (3分)不存在互不接触的回路Δ=1-(L1+L2+L3) (2分)前向通道和回路L1、L2不接触,则系统的传递函数 (3分)二、答案(根据答题要点给分,答对给相应分数,不答或答错不给分)(1)系统有两条根轨迹起始于两个开环极点,。其中一条终止于开环零点,另一条终止于无穷远处。 (2分)(2)实轴上根轨迹的区间为。 (2分)(3)根轨迹的分离点 (2分)解得,都是分离点 (4分)该系统的根轨迹如图: (5分)三、答案(根据答题要点给分,答对给相应分数,不答或答错不给分)首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益是3。(1分)系统模型为 (2分)已知: (2分)(s) (2分)由公式; (2分)换算求解得: (2分) (2分)系统传递函数为:(2分)四、答案(根据答题要点给分,答对给相应分数,不答或答错不给分)劳斯表为118816 (3分) (4分)由于特征方程式中所有系数均为正值,且劳斯行列表左端第一列的所有项均具有正号,满足系统稳定的充分和必要条件,所以系统是稳定的。 (3分)五、答案(根据答题要点给分,答对给相应分数,不答或答错不给分)(1)开环幅相特性顺时针包围(-1,j0)点N=1次; (1分)由公式Z=P+2N=3; (2分)对应系统不稳定,有3个位于S右半平面的闭环极点。 (2分)(2)增补幅相特性;开环幅相特性顺时针包围(-1,j0)点N=0次; (1分)由公式Z=P+2N=0; (2分)对应系统稳定。 (2分)六、答案(根据答题要点给分,答对给相应分数,不答或答错不给分)(1)由低频段斜率可得V=2 (2分)(2)两个转折频率ω=2和ω=20 (4分)(3)由斜率变化得系统传递函数:(4)由剪切频率ω=10,由对数幅相频率特性得 (4分)(5)传递函数 (5分)七、答案(根据答题要点给分,答对给相应分数,不答或答错不给分)校正后系统的传递函数为: (5分)得校正后系统的相位裕量为: (5分)八、答案(根据答题要点给分,答对给相应分数,不答或答错不给分)(1) (3分) (3分) (3分)(2)K=10时, (3分)求得系统根为,模小于1,因此系统稳定。 (3分)试卷5考试时间:110分钟考试形式:闭卷学生自带普通计算器:允许一、(15分)求下图所示系统的传递函数二、(15分)设某单位反馈控制系统的开环传递函数为,试绘制系统的根轨迹图。三、(10分)已知系统的特征方程为=0,试判定系统的稳定性,并说明位于右半S平面的特征根数目。四、(15分)一单位负反馈系统的开环传递函数为,试计算输入时,系统的稳态误差五、(15分)设单位负反馈系统的开环传递函数为试确定使相位裕量的开环增益K之值。六、(15分)单位负反馈系统如图所示。其中被控对象和补偿环节的图形分别为和。(1)写出被控对象和补偿环节的传递函数;(2)如果校正后的系统剪切频率为,求系统的相位裕量。七、(15分)某采样系统的框图如图所示。采样周期T=0.2秒。写出系统开环脉冲传递函数;试用劳斯稳定性判据确定使系统稳定的K值范围。TTr(t)c(t)附:常见z变换,,
一、答案(根据答题要点给分,答对给相应分数,不答或答错不给分,解题方法不唯一)方法一:等效变换法 (3分) (3分) (3分) (3分) (3分)方法二:梅逊公式该系统有一条前向通道,三个独立的回路P1=G1G2,P2=G2G3, (3分)L1=-G2H1,L2=-G1G2H2 (4分)不存在互不接触的回路Δ=1-(L1+L2) (4分)前向通道和回路均接触,则系统的传递函数 (4分)二、答案(根据答题要点给分,答对给相应分数,不答或答错不给分)(1)系统有三个开环极点,,。有三条根轨迹。 (2分)(2)实轴上根轨迹的区间为。 (2分)(3)根轨迹的分离点解得(舍去) (2分)(4)根轨迹渐进线的倾角得与实轴的交点 (2分)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年西瓜买卖详细协议模板
- 2024年预付款垫资协议格式草案
- 地质勘查工作协议2024
- 二手房交易北京协议样式2024年
- 2024年精装地暖施工协议范本
- 2024年国内集装箱运输协议样本
- 2024商业地产续租协议范本
- 2024年度农产品专项采购协议样本
- 2024年学校周边商业租赁协议样本
- 2024年借款居间服务协议模板2
- 人教版2022-2023学年三年级语文上册期中试卷及答案
- GB/T 20001.1-2024标准起草规则第1部分:术语
- (正式版)QBT 2174-2024 不锈钢厨具
- MOOC 计量学基础-中国计量大学 中国大学慕课答案
- 监控维修施工方案
- 7-12个月婴幼儿教案
- 2024年湖南省张家界市桑植县中考一模道德与法治试题
- 24春国家开放大学《乡镇行政管理》作业1-5参考答案
- 盛唐诗中“长安”意象及其文化底蕴的研究
- 电商渠道拓展与销售增长策略
- 《1+X幼儿照护(中级)》课件-气管异物急救处理
评论
0/150
提交评论