东北师大附属中学2023-2024学年数学高一下期末联考模拟试题含解析_第1页
东北师大附属中学2023-2024学年数学高一下期末联考模拟试题含解析_第2页
东北师大附属中学2023-2024学年数学高一下期末联考模拟试题含解析_第3页
东北师大附属中学2023-2024学年数学高一下期末联考模拟试题含解析_第4页
东北师大附属中学2023-2024学年数学高一下期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

东北师大附属中学2023-2024学年数学高一下期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一位妈妈记录了孩子6至9岁的身高(单位:cm),所得数据如下表:年龄(岁)6789身高(cm)118126136144由散点图可知,身高与年龄之间的线性回归方程为,预测该孩子10岁时的身高为A.154 B.153 C.152 D.1512.在数列{an}中,若a1,且对任意的n∈N*有,则数列{an}前10项的和为()A. B. C. D.3.的内角的对边分别为成等比数列,且,则等于()A. B. C. D.4.已知函数,若对于恒成立,则实数的取值范围为()A. B. C. D.5.函数f(x)=x,g(x)=x2-x+2,若存在x1,x2A.12 B.22 C.23 D.326.已知点,点是圆上任意一点,则面积的最大值是()A. B. C. D.7.已知集合,,则()A. B. C. D.8.若,则是()A.等边三角形 B.等腰三角形C.直角或等腰三角形 D.等腰直角三角形9.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是()A. B. C. D.10.已知是两条不重合的直线,为两个不同的平面,则下列说法正确的是()A.若,是异面直线,那么与相交B.若//,,则C.若,则//D.若//,则二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边过点,则_______;_______.12.与终边相同的最小正角是______.13.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.14.已知x、y、z∈R,且,则的最小值为.15.已知圆Ω过点A(5,1),B(5,3),C(﹣1,1),则圆Ω的圆心到直线l:x﹣2y+1=0的距离为_____.16.已知向量,则与的夹角是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知矩形中,,,M是以为直径的半圆周上的任意一点(与C,D均不重合),且平面平面.(1)求证:平面平面;(2)当四棱锥的体积最大时,求与所成的角18.某企业生产,两种产品,根据市场调查与预测,产品的利润与投资成正比,其关系如图1,产品的利润与投资的算术平方根成正比,其关系如图2,(注:利润与投资单位:万元)(1)分别将,两种产品的利润表示为投资的函数关系,并写出它们的函数关系式;(2)该企业已筹集到10万元资金,全部投入到,两种产品的生产,怎样分配资金,才能使企业获得最大利润,其最大利润约为多少万元(精确到1万元).19.据说伟大的阿基米德逝世后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径、圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.(1)试计算出图案中球与圆柱的体积比;(2)假设球半径.试计算出图案中圆锥的体积和表面积.20.如图,在三棱锥P-ABC中,PA⊥底面ABC,D是PC的中点.已知∠BAC=,AB=2,AC=2,PA=2.求:(1)三棱锥P-ABC的体积;(2)异面直线BC与AD所成的角的大小(结果用反三角函数值表示).21.在中,角A,B,C的对边分别为a,b,c,已知.(1)求角B的大小;(2)若,,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:根据题意,由表格可知,身高y与年龄x之间的线性回归直线方程为,那么可知回归方程必定过样本中心点,即为(7,131)代入可知,=65,预测该学生10岁时的身高,将x=10代入方程中,即可知为153,故可知答案为B考点:线性回归直线方程点评:主要是考查了线性回归直线方程的回归系数的运用,属于基础题.2、A【解析】

用累乘法可得.利用错位相减法可得S,即可求解S10=22.【详解】∵,则.∴,.Sn,.∴,∴S,则S10=22.故选:A.【点评】本题考查了累乘法求通项,考查了错位相减法求和,意在考查计算能力,属于中档题.3、B【解析】

成等比数列,可得,又,可得,利用余弦定理即可得出.【详解】解:成等比数列,,又,,则故选B.【点睛】本题考查了等比数列的性质、余弦定理,考查了推理能力与计算能力,属于中档题.4、A【解析】

首先设,将题意转化为,即可,再分类讨论求出,解不等式组即可.【详解】,恒成立,等价于,恒成立.令,对称轴为.即等价于,即可.当时,得到,解得:.当时,得到,解得:.当时,得到,解得:.综上所述:.故选:A【点睛】本题主要考查二次不等式的恒成立问题,同时考查了二次函数的最值问题,分类讨论是解题的关键,属于中档题.5、B【解析】

由题得g(x构造h(x)=g(x)-f(x)=x2-2x+2∈【详解】由fx1+f令h(x)=g(x)-f(x)=xhxn=hx1N的最大值为22.故选:B.【点睛】本题考查函数的最值的求法,注意运用转化思想,以及二次函数在闭区间上的最值求法,考查运算能力,属于中档题.6、B【解析】

求出直线的方程,计算出圆心到直线的距离,可知的最大高度为,并计算出,最后利用三角形的面积公式可得出结果.【详解】直线的方程,且,圆的圆心坐标为,半径长为,圆心到直线的距离为,所以,点到直线的距离的最大值为,因此,面积的最大值为,故选B.【点睛】本题考查三角形面积的最值问题,考查圆的几何性质,当直线与圆相离时,若圆的半径为,圆心到直线的距离为,则圆上一点到直线距离的最大值为,距离的最小值为,要熟悉相关结论的应用.7、A【解析】

首先求得集合,根据交集定义求得结果.【详解】本题正确选项:【点睛】本题考查集合运算中的交集运算,属于基础题.8、D【解析】

先根据题中条件,结合正弦定理得到,求出角,同理求出角,进而可判断出结果.【详解】因为,由正弦定理可得,所以,即,因为角为三角形内角,所以;同理,;所以,因此,是等腰直角三角形.故选D【点睛】本题主要考查判定三角形的形状问题,熟记正弦定理即可,属于常考题型.9、B【解析】

利用古典概型概率公式求解即可.【详解】设三件正品分别记为,一件次品记为则从三件正品、一件次品中随机取出两件,取出的产品可能为,共6种情况,其中取出的产品全是正品的有3种所以产品全是正品的概率故选:B【点睛】本题主要考查了利用古典概型概率公式计算概率,属于基础题.10、D【解析】

采用逐一验证法,结合线面以及线线之间的位置关系,可得结果.【详解】若,是异面直线,与也可平行,故A错若//,,也可以在内,故B错若也可以在内,故C错若//,则,故D对故选:D【点睛】本题主要考查线面以及线线之间的位置关系,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据三角函数的定义直接求得的值,即可得答案.【详解】∵角终边过点,,∴,,,∴.故答案为:;.【点睛】本题考查三角函数的定义,考查运算求解能力,属于基础题.12、【解析】

根据终边相同的角的定义以及最小正角的要求,可确定结果.【详解】因为,所以与终边相同的最小正角是.故答案为:.【点睛】本题主要考查终边相同的角,属于基础题.13、【解析】

直接利用长度型几何概型求解即可.【详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.14、【解析】试题分析:由柯西不等式,,因为.所以,当且仅当,即时取等号.所以的最小值为.考点:柯西不等式15、【解析】

求得线段和线段的垂直平分线,求这两条垂直平分线的交点即求得圆的圆心,在求的圆心到直线的距离.【详解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中点坐标为(5,2),则AB的垂直平分线方程为y=2;BC的中点坐标为(2,2),,则BC的垂直平分线方程为y﹣2=﹣3(x﹣2),即3x+y﹣8=1.联立,得.∴圆Ω的圆心为Ω(2,2),则圆Ω的圆心到直线l:x﹣2y+1=1的距离为d.故答案为:【点睛】本小题主要考查根据圆上点的坐标求圆心坐标,考查点到直线的距离公式,属于基础题.16、【解析】

利用向量的数量积直接求出向量的夹角即可.【详解】由题知,,因为,所以与的夹角为.故答案为:.【点睛】本题考查了利用向量的数量积求解向量的夹角,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】

(1)证明,得到平面,得到答案.(2)过点M作于点E,当M为半圆弧的中点时,四棱锥的体积最大,作于F,连接,与所成的角即与所成的角,计算得到答案.【详解】(1)为直径,,已知平面平面,.平面,所以,又,平面,又平面,∴平面平面.(2)过点M作于点E,∵平面平面,平面,即为四棱锥的高,又底面面积为定值.所以当M为半圆弧的中点时,四棱锥的体积最大.作于F,连接,,与所成的角即与所成的角.在直角中,,,所以.,故与所成的角为.【点睛】本题考查了面面垂直,体积的最值,异面直线夹角,意在考查学生的空间想象能力和计算能力.18、(1)为,为;(2)产品投入3.75万元,产品投入6.25万元,最大利润为4万元【解析】

(1)根据题意给出的函数模型,设;代入图中数据求得既得,注意自变量;(2)设产品投入万元,则产品投入万元,设企业利润为万元.,列出利润函数为,用换元法,设,变化为二次函数可求得利润的最大值.【详解】解:(1)设投资为万元,产品的利润为万元,产品的利润为万元由题设知;由图1知,由图2知,则,.(2)设产品投入万元,则产品投入万元,设企业利润为万元.,,令,则则当时,,此时所以当产品投入3.75万元,产品投入6.25万元,企业获得最大利润为4万元.【点睛】本题考查函数的应用,在已知函数模型时直接设出函数表达式,代入已知条件可得函数解析式.19、(1);(2)圆锥体积,表面积【解析】

(1)由球的半径可知圆柱底面半径和高,代入球和圆柱的体积公式求得体积,作比得到结果;(2)由球的半径可得圆锥底面半径和高,从而可求解出圆锥母线长,代入圆锥体积和表面积公式可求得结果.【详解】(1)设球的半径为,则圆柱底面半径为,高为球的体积;圆柱的体积球与圆柱的体积比为:(2)由题意可知:圆锥底面半径为,高为圆锥的母线长:圆锥体积:圆锥表面积:【点睛】本题考查空间几何体的表面积和体积求解问题,考查学生对于体积和表面积公式的掌握,属于基础题.20、(1);(2).【解析】

(1),三棱锥P-ABC的体积为.(2)取PB的中点E,连接D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论