版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省吕梁地区2024届高一数学第二学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,则()A.-4 B.3 C.4 D.-32.七巧板是我国古代劳动人民发明的一种智力玩具,由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A. B. C. D.3.在中,,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解4.某校有高一学生450人,高二学生480人.为了解学生的学习情况,用分层抽样的方法从该校高一高二学生中抽取一个容量为n的样本,已知从高一学生中抽取15人,则n为()A.15 B.16 C.30 D.315.如图,在三棱柱中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则与平面所成的角为()A. B. C. D.6.在中,是的中点,是上的一点,且,若,则实数()A.2 B.3 C.4 D.57.若实数满足约束条件,则的最大值是()A. B.0 C.1 D.28.设函数的图象为,则下列结论正确的是()A.函数的最小正周期是B.图象关于直线对称C.图象可由函数的图象向左平移个单位长度得到D.函数在区间上是增函数9.在锐角中,若,,,则()A. B. C. D.10.把十进制数化为二进制数为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在的值域是______________.12.若正四棱锥的底面边长为,侧棱长为,则该正四棱锥的体积为______.13.设为等差数列,若,则_____.14.函数的最小正周期为_______.15.数列的通项,前项和为,则____________.16.将二进制数110转化为十进制数的结果是_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知:,,,,求的值.18.在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.19.如图所示,某海轮以30海里/小时的速度航行,在A点测得海面上油井P在南偏东,向北航行40分钟后到达点,测得油井P在南偏东,海轮改为北偏东的航向再行驶80分钟到达C点,求P,C间的距离.20.在中,分别为内角的对边,且(1)求的大小:(2)若,求的面积.21.已知向量=,=,=,为坐标原点.(1)若△为直角三角形,且∠为直角,求实数的值;(2)若点、、能构成三角形,求实数应满足的条件.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
已知等式左边用诱导公式变形后用正弦和二倍角公式化简,右边用切化弦法变形,再由二倍角公式化简后可得.【详解】,,∴,.故选:A.【点睛】本题考查诱导公式,考查二倍角公式,同角间的三角函数关系,掌握三角函数恒等变形公式,确定选用公式的顺序是解题关键.2、B【解析】
设正方形的边长为,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率.【详解】设正方形的边长为,则阴影部分由三个小等腰直角三角形构成,则正方形的对角线长为,则等腰直角三角形的边长为,对应每个小等腰三角形的面积,则阴影部分的面积之和为,正方形的面积为,若在此正方形中任取一点,则此点取自黑色部分的概率为,故选:B.【点睛】本题考查面积型几何概型概率公式计算事件的概率,解题的关键在于计算出所求事件对应区域的面积和总区域的面积,考查计算能力,属于中等题.3、B【解析】由题意知,,,,∴,如图:∵,∴此三角形的解的情况有2种,故选B.4、D【解析】
根据分层抽样的定义和性质进行求解即可.【详解】根据分层抽样原理,列方程如下,n450+480解得n=1.故选:D.【点睛】本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.5、A【解析】
取的中点,连接、,作,垂足为点,证明平面,于是得出直线与平面所成的角为,然后利用锐角三角函数可求出.【详解】如下图所示,取的中点,连接、,作,垂足为点,是边长为的等边三角形,点为的中点,则,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直线与平面所成的角为,易知,在中,,,,,,即直线与平面所成的角为,故选A.【点睛】本题考查直线与平面所成角的计算,求解时遵循“一作、二证、三计算”的原则,一作的是过点作面的垂线,有时也可以通过等体积法计算出点到平面的距离,利用该距离与线段长度的比值作为直线与平面所成角的正弦值,考查计算能力与推理能力,属于中等题.6、C【解析】
选择以作为基底表示,根据变形成,即可求解.【详解】在中,根据平行四边形法则,有,是的中点,,由题:,即,,,所以,所以解得:故选:C【点睛】此题考查平面向量的线性运算,根据平面向量基本定理处理系数关系.7、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标代入目标函数即可得解.【详解】作出可行域如图,设,联立,则,,当直线经过点时,截距取得最小值,取得最大值.故选:C【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.8、B【解析】
利用函数的周期判断A的正误;通过x=函数是否取得最值判断B的正误;利用函数的图象的平移判断C的正误,利用函数的单调区间判断D的正误.【详解】对于A,f(x)的最小正周期为π,判断A错误;对于B,当x=,函数f(x)=sin(2×+)=1,∴选项B正确;对于C,把的图象向左平移个单位,得到函数sin[2(x+)]=sin(2x+,∴选项C不正确.对于D,由,可得,k∈Z,所以在上不恒为增函数,∴选项D错误;故选B.【点睛】本题考查三角函数的基本性质的应用,函数的单调性、周期性及函数图象变换,属于基本知识的考查.9、D【解析】
由同角三角函数关系式,先求得,再由余弦定理即可求得的值.【详解】因为为锐角三角形,由同角三角函数关系式可得又因为,由余弦定理可得代入可得所以故选:D【点睛】本题考查了同角三角函数关系式应用,余弦定理求三角形的边,属于基础题.10、C【解析】选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
利用,即可得出.【详解】解:由已知,,又
,
故答案为:.【点睛】本题考查了反三角函数的求值、单调性,考查了推理能力与计算能力,属于中档题.12、4.【解析】
设正四棱锥的高为PO,连结AO,在直角三角形POA中,求得高,利用体积公式,即可求解.【详解】由题意,如图所示,正四棱锥P-ABCD中,AB=,PA=设正四棱锥的高为PO,连结AO,则AO=,在直角三角形POA中,,∴.【点睛】本题主要考查了正棱锥体积的计算,其中解答中熟记正棱锥的性质,以及棱锥的体积公式,准确计算是解答的关键,着重考查了推理与运算能力.13、【解析】
根据等差数列的性质:在等差数列中若则即可【详解】故答案为:【点睛】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。14、【解析】
将三角函数进行降次,然后通过辅助角公式化为一个名称,最后利用周期公式得到结果.【详解】,.【点睛】本题主要考查二倍角公式,及辅助角公式,周期的运算,难度不大.15、7【解析】
根据数列的通项公式,求得数列的周期为4,利用规律计算,即可求解.【详解】由题意,数列的通项,可得,,得到数列是以4项为周期的形式,所以=.故答案为:7.【点睛】本题主要考查了数列的求和问题,其中解答中根据数列的通项公式求得数列的周期,以及各项的变化规律是解答的关键,属于基础题,着重考查了.16、6【解析】
将二进制数从右开始,第一位数字乘以2的0次幂,第二位数字乘以2的1次幂,以此类推,进行计算即可.【详解】,故答案为:6.【点睛】本题考查进位制,解题关键是了解不同进制数之间的换算法则,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
先由同角三角函数的平方关系求出,,然后结合两角和的余弦公式求解即可.【详解】解:由,,,,所以,,则.【点睛】本题考查了同角三角函数的平方关系,重点考查了两角和的余弦公式,属基础题.18、(Ⅰ)(Ⅱ)【解析】
(1)类比等差数列求和的倒序相加法,将等比数列前n项积倒序相乘,可求,代入即可求解.(2)由(1)知,利用两角差的正切公式,化简,,得,再根据裂项相消法,即可求解.【详解】(Ⅰ)由题意,构成递增的等比数列,其中,则①②①②,并利用等比数列性质,得(Ⅱ)由(Ⅰ)知,又所以数列的前项和为【点睛】(Ⅰ)类比等差数列,利用等比数列的相关性质,推导等比数列前项积公式,创新应用型题;(Ⅱ)由两角差的正切公式,推导连续两个自然数的正切之差,构造新型的裂项相消的式子,创新应用型题;本题属于难题.19、海里【解析】
在中,利用正弦定理可求得BP的长,在直角三角形中,利用勾股定理,可求P、C间的距离.【详解】在中,,,,由正弦定理知得,∴.在中,,又,∴,∴可得P、C间距离为(海里)【点睛】本题的考点是解三角形的实际应用,主要考查将实际问题转化为数学问题,可把条件和问题放到三角形中,利用正弦定理及勾股定理求解.20、(1)(2)【解析】
(1)根据正弦定理将,角化为边得,即,再由余弦定理求解(2)根据,由正弦定理,求边b,又,然后代入公式求解.【详解】(1)因为,由正弦定理得:,即,,又,.(2)因为由正弦定理得,又,所以.【点睛】本题主要考查了正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.21、(1);(2)【解析】
(1)利用向量的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑工程设计施工一体化合同
- 媒体融合背景下的公关策略
- 苏教版五年级上册数学第四单元 小数加法和减法 测试卷附答案(a卷)
- 安徽省亳州市利辛县2024-2025学年八年级上学期期中地理试题(无答案)
- 广东省汕头市龙湖实验中学 2024-2025学年七年级上学期11月期中道德与法治试题
- 江西省赣州市经开区2024-2025学年七年级数学上学期期中考试卷
- 2024年度海洋运输货物保险服务合同
- 2024年式样订购:服装供应商合同
- 2024年度智能安防机器人研发生产合同
- 高效农药作用机制
- 船舶触碰桥梁应急预案
- 江苏省盐城市盐都区实验初中2023-2024学年九年级上学期12月月考数学试题
- 护理礼仪演示课件
- 蒸汽特性数据表
- 《高级会计学(第9版)》习题答案
- 职业生涯规划-软件测试工程师
- 家长会课件:初二上期家长会课件
- Unit1第1课时(SectionA1a2d)(教学设计)九年级英语全一册(人教版)
- 血液透析患者水分控制的健康宣教
- :第四单元《音诗音画》-《沃尔塔瓦河》 课件
- 东华大学理论考试体育舞蹈题库
评论
0/150
提交评论