版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省鹤壁市淇滨区鹤壁高中高一数学第二学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设集合,则A. B. C. D.2.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为3.如图所示,已知以正方体所有面的中心为顶点的多面体的体积为,则该正方体的外接球的表面积为()A. B. C. D.4.将函数f(x)=sin(ωx+)(ω>0)的图象向左平移个单位,所得到的函数图象关于y轴对称,则函数f(x)的最小正周期不可能是()A. B. C. D.5.设m>1,在约束条件y≥xA.1,1+2C.(1,3) D.(3,+∞)6.在等比数列中,,,,则等于()A. B. C. D.7.已知函数在上单调递增,且的图象关于对称.若,则的解集为()A. B.C. D.8.某学校礼堂有30排座位,每排有20个座位,一次心理讲座时礼堂中坐满了学生,会后为了了解有关情况,留下座位号是15的30名学生,这里运用的抽样方法是()A.抽签法 B.随机数法 C.系统抽样 D.分层抽样9.若向量互相垂直,且,则的值为()A. B. C. D.10.在平面直角坐标系中,已知四边形是平行四边形,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知在数列中,,,则数列的通项公式______.12.已知,,若与的夹角为钝角,则实数的取值范围为______.13.已知数列满足,(),则________.14.已知直线与圆相交于,两点,则=______.15.已知角终边经过点,则__________.16.已知,,若,则实数_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.中,角的对边分别为,且.(I)求角的大小;(II)若,求的最小值.18.设函数(1)若对于一切实数恒成立,求的取值范围;(2)若对于恒成立,求的取值范围.19.在“新零售”模式的背景下,某大型零售公司推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这个x个分店的年收入之和.(1)该公司已经过初步判断,可用线性回归模型拟合y与x的关系,求y关于x的线性回归方程(2)假设该公司在A区获得的总年利润z(单位:百万元)与x,y之间的关系为,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店时,才能使A区平均每个分店的年利润最大?(参考公式:,其中,)20.如图,在四棱锥中,丄平面,,,,,.(1)证明丄;(2)求二面角的正弦值;(3)设为棱上的点,满足异面直线与所成的角为,求的长.21.已知函数.(1)若,求函数的值;(2)求函数的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】,选B.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2、C【解析】
A.时无最小值;
B.令,由,可得,即,令,利用单调性研究其最值;
C.令,令,利用单调性研究其最值;
D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;
B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;
D.当时,,无最小值,故D不正确.
故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.3、A【解析】
设正方体的棱长为,则中间四棱锥的底面边长为,由已知多面体的体积求解,得到正方体外接球的半径,则外接球的表面积可求.【详解】设正方体的棱长为,则中间四棱锥的底面边长为,多面体的体积为,即.正方体的对角线长为.则正方体的外接球的半径为.表面积为.故选:.【点睛】本题考查几何体的体积的求法,考查空间想象能力以及计算能力,是基础题.4、D【解析】
利用函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,求得函数的最小正周期为,由此得出结论.【详解】解:将函数的图象向左平移个单位,可得的图象,根据所得到的函数图象关于轴对称,可得,即,.函数的最小正周期为,则函数的最小正周期不可能是,故选.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,属于基础题.5、A【解析】试题分析:∵,故直线与直线交于点,目标函数对应的直线与直线垂直,且在点,取得最大值,其关系如图所示:即,解得,又∵,解得,选:A.考点:简单线性规划的应用.【方法点睛】本题考查的知识点是简单线性规划的应用,我们可以判断直线的倾斜角位于区间上,由此我们不难判断出满足约束条件的平面区域的形状,其中根据平面直线方程判断出目标函数对应的直线与直线垂直,且在点取得最大值,并由此构造出关于的不等式组是解答本题的关键.6、C【解析】
直接利用等比数列公式计算得到答案.【详解】故选:C【点睛】本题考查了等比数列的计算,属于简单题.7、D【解析】
首先根据题意得到的图象关于轴对称,,再根据函数的单调性画出草图,解不等式即可.【详解】因为的图象关于对称,所以的图象关于轴对称,.又因为在上单调递增,所以函数的草图如下:所以或,解得:或.故选:D【点睛】本题主要考查函数的对称性,同时考查了函数的图象平移变换,属于中档题.8、C【解析】抽名学生分了组(每排为一组),每组抽一个,符合系统抽样的定义故选9、B【解析】
首先根据题意得到,再计算即可.【详解】因为向量互相垂直,,所以.所以.故选:B【点睛】本题主要考查平面向量模长的计算,同时考查了平面向量数量积,属于简单题.10、D【解析】因为四边形是平行四边形,所以,所以,故选D.考点:1、平面向量的加法运算;2、平面向量数量积的坐标运算.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
通过变形可知,累乘计算即得结论.【详解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案为:an=n.【点睛】本题考查数列的通项公式的求法,利用累乘法是解决本题的关键,注意解题方法的积累,属于中档题.12、【解析】
由题意得出且与不共线,利用向量的坐标运算可求出实数的取值范围.【详解】由于与的夹角为钝角,则且与不共线,,,,解得且,因此,实数的取值范围是,故答案为:.【点睛】本题考查利用向量的夹角求参数,解题时要找到其转化条件,设两个非零向量与的夹角为,为锐角,为钝角.13、31【解析】
根据数列的首项及递推公式依次求出、、……即可.【详解】解:,故答案为:【点睛】本题考查利用递推公式求出数列的项,属于基础题.14、.【解析】
将圆的方程化为标准方程,由点到直线距离公式求得弦心距,再结合垂径定理即可求得.【详解】圆,变形可得所以圆心坐标为,半径直线,变形可得由点到直线距离公式可得弦心距为由垂径定理可知故答案为:【点睛】本题考查了直线与圆相交时的弦长求法,点到直线距离公式的应用及垂径定理的用法,属于基础题.15、4【解析】
根据任意角的三角函数的定义,结合同角三角函数的基本关系求解即可.【详解】因为角终边经过点,所以,因此.故答案为:4【点睛】本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,属于基础题.16、【解析】
利用平面向量垂直的数量积关系可得,再利用数量积的坐标运算可得:,解方程即可.【详解】因为,所以,整理得:,解得:【点睛】本题主要考查了平面向量垂直的坐标关系及方程思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(I);(II)最小值为2.【解析】
(I),化简即得C的值;(II)【详解】(I)因为,所以;(II)由余弦定理可得,,因为,所以,当且仅当的最小值为2.【点睛】本题主要考查正弦定理余弦定理解三角形和基本不等式,意在考查学生对这些知识的理解掌握水平和分析推理能力.18、(1)(2)【解析】
(1)由不等式恒成立,结合二次函数的性质,分类讨论,即可求解;(2)要使对于恒成立,整理得只需恒成立,结合基本不等式求得最值,即可求解.【详解】(1)由题意,要使不等式恒成立,①当时,显然成立,所以时,不等式恒成立;②当时,只需,解得,综上所述,实数的取值范围为.(2)要使对于恒成立,只需恒成立,只需,又因为,只需,令,则只需即可因为,当且仅当,即时等式成立;因为,所以,所以.【点睛】本题主要考查了含参数的不等式的恒成立问题的求解,其中解答中把不等式的恒成立问题转化为函数的最值问题是解答的关键,着重考查了分类讨论思想,以及转化思想的应用,属于基础题.19、(1);(2)该公司应开设4个分店时,在该区的每个分店的平均利润最大【解析】
(1)由表中数据先求得.再结合公式分别求得,即可得y关于x的线性回归方程.(2)将(1)中所得结果代入中,进而表示出每个分店的平均利润,结合基本不等式即可求得最值及取最值时自变量的值.【详解】(1)由表中数据和参考数据得:,,因而可得,,再代入公式计算可知,∴,∴.(2)由题意,可知总收入的预报值与x之间的关系为:,设该区每个分店的平均利润为t,则,故t的预报值与x之间的关系为,当且仅当时取等号,即或(舍)则当时,取到最大值,故该公司应开设4个分店时,在该区的每个分店的平均利润最大.【点睛】本题考查了线性回归方程的求法,基本不等式求函数的最值及等号成立的条件,属于基础题.20、(1)见证明;(2);(3)【解析】
(1)要证异面直线垂直,即证线面垂直,本题需证平面(2)作于点,连接.为二面角的平面角,在中解出即可.(3)过点作的平行线与线段相交,交点为,连接,;计算出AF、BF,再在中利用的余弦公式,解出EF,即可求出AE的长【详解】(1)证明:由平面,可得,又由,,故平面.又平面,所以.(2)如图,作于点,连接.由,,可得平面.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度畜牧养殖保险产品定制服务合同4篇
- 二手挖掘机交易合同范本2024一
- 2025年度高科技研发中心租赁合同4篇
- 二零二四年物流市场调查合同3篇带眉脚
- 二零二五年度高等教育机构兼职教授服务协议4篇
- 2025年中国行星式强制混合机市场调查研究报告
- 2025年中国二层架市场调查研究报告
- 二零二四年度医疗设备试用与品牌推广合同3篇
- 2025至2031年中国草编坐垫行业投资前景及策略咨询研究报告
- 交响乐作品演绎风格-深度研究
- 人教版小学数学一年级上册小学生口算天天练
- 九年级上册-备战2024年中考历史总复习核心考点与重难点练习(统部编版)
- 三年级数学添括号去括号加减简便计算练习400道及答案
- 苏教版五年级上册数学简便计算300题及答案
- 澳洲牛肉行业分析
- 老客户的开发与技巧课件
- 计算机江苏对口单招文化综合理论试卷
- 成人学士学位英语单词(史上全面)
- KAPPA-实施方法课件
- GB/T 13813-2023煤矿用金属材料摩擦火花安全性试验方法和判定规则
- GB/T 33084-2016大型合金结构钢锻件技术条件
评论
0/150
提交评论