版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市三校联考2025届高一数学第二学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列说法正确的是()A.函数的最小值为 B.函数的最小值为C.函数的最小值为 D.函数的最小值为2.下列函数中,既不是奇函数也不是偶函数的是()A. B. C. D.3.若角的终边经过点,则()A. B. C. D.4.在边长为1的等边三角形ABC中,D是AB的中点,E为线段AC上一动点,则的取值范围为()A. B. C. D.5.设等比数列满足,,则()A.8 B.16 C.24 D.486.下列函数中,在区间上为增函数的是().A. B. C. D.7.小金同学在学校中贯彻着“边玩边学”的学风,他在“汉诺塔”的游戏中发现了数列递推的奥妙:有、、三个木桩,木桩上套有编号分别为、、、、、、的七个圆环,规定每次只能将一个圆环从一个木桩移动到另一个木桩,且任意一个木桩上不能出现“编号较大的圆环在编号较小的圆环之上”的情况,现要将这七个圆环全部套到木桩上,则所需的最少次数为()A. B. C. D.8.某几何体的三视图如下图所示(单位:cm)则该几何体的表面积(单位:)是()A. B. C. D.9.两圆和的位置关系是()A.相离 B.相交 C.内切 D.外切10.对于一个给定的数列,定义:若,称数列为数列的一阶差分数列;若,称数列为数列的二阶差分数列.若数列的二阶差分数列的所有项都等于,且,则()A.2018 B.1009 C.1000 D.500二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则__________.12.向边长为的正方形内随机投粒豆子,其中粒豆子落在到正方形的顶点的距离不大于的区域内(图中阴影区域),由此可估计的近似值为______.(保留四位有效数字)13.古希腊数学家阿波罗尼斯在他的巨著《圆锥曲线论》中有一个著名的几何问题:在平面上给定两点,,动点满足(其中和是正常数,且),则的轨迹是一个圆,这个圆称之为“阿波罗尼斯圆”,该圆的半径为__________.14.一个社会调查机构就某地居民收入调查了10000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在(元)内的应抽出___人.15.若过点作圆的切线,则直线的方程为_______________.16.设Sn为数列{an}的前n项和,若Sn=(-1)nan-,n∈N,则a3=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)求的值;(2)求的最小值以及取得最小值时的值18.如图,在平面直角坐标系xOy中,已知圆C:x2⑴若圆E的半径为2,圆E与x轴相切且与圆C外切,求圆E的标准方程;⑵若过原点O的直线l与圆C相交于A,B两点,且OA=AB,求直线l的方程.19.已知三角形的三个顶点,,.(1)求线段的中线所在直线方程;(2)求边上的高所在的直线方程.20.已知圆过点,且与圆关于直线:对称.(1)求圆的标准方程;(2)设为圆上的一个动点,求的最小值.21.假设关于某设备的使用年限x和支出的维修费y(万元)有如下表的统计资料(1)画出数据的散点图,并判断y与x是否呈线性相关关系(2)若y与x呈线性相关关系,求线性回归方程的回归系数,(3)估计使用年限为10年时,维修费用是多少?参考公式及相关数据:
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
A.时无最小值;
B.令,由,可得,即,令,利用单调性研究其最值;
C.令,令,利用单调性研究其最值;
D.当时,,无最小值.【详解】解:A.时无最小值,故A错误;
B.令,由,可得,即,令,则其在上单调递减,故,故B错误;C.令,令,则其在上单调递减,上单调递增,故,故C正确;
D.当时,,无最小值,故D不正确.
故选:C.【点睛】本题考查了基本不等式的性质、利用导数研究函数的单调性极值与最值、三角函数的单调性,考查了推理能力与计算能力,属于中档题.2、D【解析】
利用奇函数偶函数的判定方法逐一判断得解.【详解】A.函数的定义域为R,关于原点对称,,所以函数是偶函数;B.函数的定义域为,关于原点对称.,所以函数是奇函数;C.函数的定义域为R,关于原点对称,,所以函数是偶函数;D.函数的定义域为R,关于原点对称,,,所以函数既不是奇函数,也不是偶函数.故选D【点睛】本题主要考查函数的奇偶性的判断,意在考查学生对该知识的理解掌握水平,属于基础题.3、B【解析】
根据任意角的三角函数的定义,可以直接求到本题答案.【详解】因为点在角的终边上,所以.故选:B【点睛】本题主要考查利用任意角的三角函数的定义求值.4、B【解析】
由题意,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,得到,,以及直线的方程,设出点E坐标,根据向量数量积,直接计算,即可得出结果.【详解】如图,以点为坐标原点,方向为轴正方向,方向为轴正方向,建立平面直角坐标系,因为等边三角形的边长为1,所以,,,,则直线的方程为,整理得,因为E为线段AC上一动点,设,,则,,所以,因为,所以在上单调递减,在上单调递增,所以的最小值为,最大值为.即的取值范围为.故选B【点睛】本题主要考查平面向量的数量积,利用建立坐标系的方法求解即可,属于常考题型.5、A【解析】
利用等比数列的通项公式即可求解.【详解】设等比数列的公比为,则,解得所以.故选:A【点睛】本题考查了等比数列的通项公式,需熟记公式,属于基础题.6、B【解析】试题分析:根据初等函数的图象,可得函数在区间(0,1)上的单调性,从而可得结论.解:由题意,A的底数大于0小于1、C是图象在一、三象限的单调减函数、D是余弦函数,,在(0,+∞)上不单调,B的底数大于1,在(0,+∞)上单调增,故在区间(0,1)上是增函数,故选B考点:函数的单调性点评:本题考查函数的单调性,掌握初等函数的图象与性质是关键.7、B【解析】
假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,根据题意求出数列的递推公式,利用递推公式求出数列的通项公式,从而得出的值,可得出结果.【详解】假设桩上有个圆环,将个圆环从木桩全部套到木桩上,需要最少的次数为,可这样操作,先将个圆环从木桩全部套到木桩上,至少需要的次数为,然后将最大的圆环从木桩套在木桩上,需要次,在将木桩上个圆环从木桩套到木桩上,至少需要的次数为,所以,,易知.设,得,对比得,,且,所以,数列是以为首项,以为公比的等比数列,,因此,,故选:B.【点睛】本题考查数列递推公式的应用,同时也考查了利用待定系数法求数列的通项,解题的关键就是利用题意得出数列的递推公式,考查推理能力与运算求解能力,属于中等题.8、C【解析】
通过三视图的观察可得到该几何体是由一个圆锥加一个圆柱得到的,表面积由一个圆锥的表面积和一个圆柱的侧面积组成【详解】圆柱的侧面积为,圆锥的表面积为,其中,,。选C【点睛】几何体的表面积一定要看清楚哪些面存在,哪些面不存在9、B【解析】
由圆的方程可得两圆圆心坐标和半径;根据圆心距和半径之间的关系,即可判断出两圆的位置关系.【详解】由圆的方程可知,两圆圆心分别为:和;半径分别为:,则圆心距:两圆位置关系为:相交本题正确选项:【点睛】本题考查圆与圆位置关系的判定;关键是明确两圆位置关系的判定是根据圆心距与两圆半径之间的长度关系确定.10、C【解析】
根据题目给出的定义,分析出其数列的特点为等差数列,利用等差数列求解.【详解】依题意知是公差为的等差数列,设其首项为,则,即,利用累加法可得,由于,即解得,,故.选C.【点睛】本题考查新定义数列和等差数列,属于难度题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】12、3.1【解析】
根据已知条件求出满足条件的正方形的面积,及到顶点的距离不大于1的区域(图中阴影区域)的面积比值等于频率即可求出答案.【详解】依题意得,正方形的面积,阴影部分的面积,故落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的概率,随机投10000粒豆子,其中1968粒豆子落在到正方形的顶点的距离不大于1的区域内(图中阴影区域)的频率为:,即有:,解得:,故答案为3.1.【点睛】几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件的基本事件对应的“几何度量”(A),再求出总的基本事件对应的“几何度量”,最后根据求解.利用频率约等于概率,即可求解。13、【解析】
设,由动点满足(其中和是正常数,且),可得,化简整理可得.【详解】设,由动点满足(其中和是正常数,且),所以,化简得,即,所以该圆半径故该圆的半径为.【点睛】本题考查圆方程的标准形式和两点距离公式,难点主要在于计算.14、25【解析】由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人.故答案为25.15、或【解析】
讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【点睛】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。16、-【解析】当n=3时,S3=a1+a2+a3=-a3-,则a1+a2+2a3=-,当n=4时,S4=a1+a2+a3+a4=a4-,两式相减得a3=-.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当时,函数取得最小值.【解析】
(1)将代入函数计算得到答案.(2)根据降次公式和辅助角公式化简函数为,当时取最小值.【详解】(1)(2)由可得,故函数的最小值为,当时取得最小值.【点睛】本题考查了三角函数的计算,三角函数的最小值,将三角函数化简为标准形式是解题的关键,意在考查学生的计算能力.18、(1)(x+3)2+(y-2)2【解析】
(1)设出圆E的标准方程为(x-a)2+(y-b)2=r2,由圆E与x轴相切,可得b=r,由圆E与圆C外切,可得两圆心距等于半径之和,由此解出(2)法一:设出A点坐标为(x0,y0),根据OA=AB,可得到点B坐标,把A、B两点坐标代入圆法二:设AB的中点为M,连结CM,CA,设出直线l的方程,由题求出CM的长,利用点到直线的距离即可得求出k值,从而得到直线l的方程【详解】⑴设圆E的标准方程为(x-a)2+(y-b)2=r2因为圆E的半径为2,与x轴相切,所以b=2因为圆E与圆C外切所以EC=3,即a由①②解得a=±3,b=2故圆E的标准方程为(x+3)2+⑵方法一;设A(因为OA=AB,所以A为OB的中点,从而B(2因为A,B都在圆C上所以x解得x0=-故直线l的方程为:y=±方法二:设AB的中点为M,连结CM,CA设AM=t,CM=d因为OA=AB,所以OM=3t在RtΔACM中,d2在RtΔOCM中,d2由③④解得d=由题可知直线l的斜率一定存在,设直线l的方程为y=kx则d=2k故直线l的方程为y=±【点睛】本题考查圆的标准方程与直线方程,解题关键是设出方程,找出关系式,属于中档题。19、(1)(2).【解析】
(1)先求出BC中点的坐标,再求BC的中线所在直线的方程;(2)先求出AB的斜率,再求出边上的高所在的直线方程.【详解】(1)由题得BC的中点D的坐标为(2,-1),所以,所以线段的中线AD所在直线方程为即.(2)由题得,所以AB边上的高所在直线方程为,即.【点睛】本题主要考查直线方程的求法,意在考查学生对该知识的理解掌握水平,属于基础题.20、(1);(2).【解析】
试题分析:(1)两个圆关于直线对称,那么就是半径相等,圆心关于直线对称,利用斜率相乘等于和中点在直线上建立方程,解方程组求出圆心坐标,同时求得圆的半径,由此求得圆的标准方程;(2)设,则,代入化简得,利用三角换元,设,所以.试题解析:(1)设圆心,则,解得,则圆的方程为,将点的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版门窗行业智能化升级改造合同3篇
- 2025年度模板木枋出口业务合同模板3篇
- 二零二五版借贷房屋买卖合同解除与终止合同4篇
- 美容院美容培训学校二零二五年度师资引进合同4篇
- 二零二五年度口罩生产设备居间引进合同范本3篇
- 二零二五年度品牌疫情防控物资采购与配送服务合同规范4篇
- 二零二五年度插画版权转让及衍生品开发合同
- 二零二五年度外汇贷款贷前调查合同范本
- 二零二五年度图片版权交易下载服务协议
- 2025年建筑工程施工合同合同履行中的变更与补充协议2篇
- 2025-2030年中国草莓市场竞争格局及发展趋势分析报告
- 第二章《有理数的运算》单元备课教学实录2024-2025学年人教版数学七年级上册
- 华为智慧园区解决方案介绍
- 奕成玻璃基板先进封装中试线项目环评报告表
- 广西壮族自治区房屋建筑和市政基础设施全过程工程咨询服务招标文件范本(2020年版)修订版
- 人教版八年级英语上册期末专项复习-完形填空和阅读理解(含答案)
- 2024新版有限空间作业安全大培训
- GB/T 44304-2024精细陶瓷室温断裂阻力试验方法压痕(IF)法
- 年度董事会工作计划
- 《退休不褪色余热亦生辉》学校退休教师欢送会
- 02R112拱顶油罐图集
评论
0/150
提交评论