云南省华宁一中2025届数学高一下期末监测模拟试题含解析_第1页
云南省华宁一中2025届数学高一下期末监测模拟试题含解析_第2页
云南省华宁一中2025届数学高一下期末监测模拟试题含解析_第3页
云南省华宁一中2025届数学高一下期末监测模拟试题含解析_第4页
云南省华宁一中2025届数学高一下期末监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省华宁一中2025届数学高一下期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知各项均不为零的数列,定义向量,,.下列命题中真命题是()A.若对任意的,都有成立,则数列是等差数列B.若对任意的,都有成立,则数列是等比数列C.若对任意的,都有成立,则数列是等差数列D.若对任意的,都有成立,则数列是等比数列2.已知直线过点且与直线垂直,则该直线方程为()A. B.C. D.3.下列函数,是偶函数的为()A. B. C. D.4.已知直线:,:,若:;,则是的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件5.在中,已知,且满足,则的面积为()A.1 B.2 C. D.6.在中,角所对的边分别为,若的面积,则()A. B. C. D.7.已知,若,则等于()A. B.1 C.2 D.8.在等差数列中,已知=2,=16,则为()A.8 B.128 C.28 D.149.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为().A. B. C. D.10.在区间上随机地取一个数.则的值介于0到之间的概率为().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.数列的前项和为,,且(),记,则的值是________.12.若正四棱锥的所有棱长都相等,则该棱锥的侧棱与底面所成的角的大小为____.13.等差数列前9项的和等于前4项的和.若,则.14.一个社会调查机构就某地居民收入调查了10000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在(元)内的应抽出___人.15.在四面体中,平面ABC,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.16.关于的方程只有一个实数根,则实数_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.甲,乙两机床同时加工直径为100cm的零件,为检验质量,各从中抽取6件测量的数据为:甲:99,100,98,100,100,103乙:99,100,102,99,100,100(1)分别计算两组数据的平均数及方差(2)根据计算结果判断哪台机床加工零件的质量更稳定.18.在等差数列中,,,等比数列中,,.(1)求数列,的通项公式;(2)若,求数列的前n项和.19.已知两点,.(1)求直线AB的方程;(2)直线l经过,且倾斜角为,求直线l与AB的交点坐标.20.从半径为1的半圆出发,以此向内、向外连续作半圆,且后一个半圆的直径为前一个半圆的半径,如此下去,可得到无数个半圆.(1)求出所有这些半圆围城的封闭图形的周长;(2)求出所有这些半圆围城的封闭图形的面积.21.已知圆与轴交于两点,且(为圆心),过点且斜率为的直线与圆相交于两点(Ⅰ)求实数的值;(Ⅱ)若,求的取值范围;(Ⅲ)若向量与向量共线(为坐标原点),求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据向量平行的坐标表示,得到,利用累乘法,求得,从而可作出判定,得到答案.【详解】由题意知,向量,,,当时,可得,即,所以,所以数列表示首项为,公差为的等差数列.当,可得,即,所以,所以数列既不是等差数列,也不是等比数列.故选A.【点睛】本题主要考查了向量的平行关系的坐标表示,等差数列的定义,以及“累乘法”求解通项公式的应用,着重考查了推理与运算能力,属于基础题.2、A【解析】

根据垂直关系求出直线斜率为,再由点斜式写出直线。【详解】由直线与直线垂直,可知直线斜率为,再由点斜式可知直线为:即.故选A.【点睛】本题考查两直线垂直,属于基础题。3、B【解析】

逐项判断各项的定义域是否关于原点对称,再判断是否满足即可得解.【详解】易知各选项的定义域均关于原点对称.,故A错误;,故B正确;,故C错误;,故D错误.故选:B.【点睛】本题考查了诱导公式的应用和函数奇偶性的判断,属于基础题.4、C【解析】因为直线:,:,所以或,即是的必要不充分条件.故选C.点睛:本题考查两条直线平行的判定;由直线的一般式判定两直线平行或垂直时,若将一般式化成斜截式,往往需要讨论斜率是否存在,为了避免讨论,记住以下结论:已知直线,.则或;.5、D【解析】

根据正弦定理先进行化简,然后根据余弦定理求出C的大小,结合三角形的面积公式进行计算即可.【详解】在中,已知,∴由正弦定理得,即,∴==,即=.∵,∴的面积.故选D.【点睛】本题主要考查三角形面积的计算,结合正弦定理余弦定理进行化简是解决本题的关键,属于基础题.6、B【解析】

利用面积公式及可求,再利用同角的三角函数的基本关系式可求,最后利用余弦定理可求的值.【详解】因为,故,所以,因为,故,又,由余弦定理可得,故.故选B.【点睛】三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.7、A【解析】

首先根据⇒(cos﹣3)cos+sin(sin﹣3)=﹣1,并化简得出,再化为Asin()形式即可得结果.【详解】由得:(cos﹣3)cos+sin(sin﹣3)=﹣1,化简得,即sin()=,则sin()=故选A.【点睛】本题考查了三角函数的化简求值以及向量的数量积的运算,属于基础题.8、D【解析】

将已知条件转化为的形式列方程组,解方程组求得,进而求得的值.【详解】依题意,解得,故.故选:D.【点睛】本小题主要考查等差数列通项的基本量计算,属于基础题.9、A【解析】试题分析:直三棱柱的各项点都在同一个球面上,如图所示,所以中,,所以下底面的外心为的中点,同理,可得上底面的外心为的中点,连接,则与侧棱平行,所以平面,再取的中点,可得点到的距离相等,所以点是三棱柱的为接球的球心,因为直角中,,所以,即外接球的半径,因此三棱柱外接球的体积为,故选A.考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.10、D【解析】

由,得.由函数的图像知,使的值介于0到之间的落在和之内.于是,所求概率为.故答案为D二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

由已知条件推导出是首项为,公比为的等比数列,由此能求出的值.【详解】解:因为数列的前项和为,,且(),,.即,.是首项为,公比为的等比数列,故答案为:【点睛】本题考查数列的前项和的求法,解题时要注意等比数列的性质的合理应用,属于中档题.12、【解析】

先作出线面角,再利用三角函数求解即可.【详解】如图,设正四棱锥的棱长为1,作在底面的射影,则为与底面所成角,为正方形的中心,,,,故答案为.【点睛】本题考查线面角,考查学生的计算能力,作出线面角是关键.属于基础题.13、10【解析】

根据等差数列的前n项和公式可得,结合等差数列的性质即可求得k的值.【详解】因为,且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n项和公式,等差数列性质的应用,属于基础题.14、25【解析】由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人.故答案为25.15、【解析】

设,再根据外接球的直径与和底面外接圆的一条直径构成直角三角形求解进而求得体积即可.【详解】设,底面外接圆直径为.易得底面是边长为3的等边三角形.则由正弦定理得.又外接球的直径与和底面外接圆的一条直径构成直角三角形有.又外接球的表面积为,即.解得.故四面体体积为.故答案为:【点睛】本题主要考查了侧棱垂直于底面的四面体的外接球问题.需要根据题意建立底面三角形外接圆的直径和三棱锥的高与外接球直径的关系再求解.属于中档题.16、【解析】

首先从方程看是不能直接解出这个方程的根的,因此可以转化成函数,从函数的奇偶性出发。【详解】设,则∴为偶函数,其图象关于轴对称,又依题意只有一个零点,故此零点只能是,所以,∴,∴,∴,∴,故答案为:【点睛】本题主要考查了函数奇偶性以及零点与方程的关系,方程的根就是对应函数的零点,本题属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);,,;(2)乙机床加工零件的质量更稳定.【解析】

(1)根据题中数据,结合平均数与方差的公式,即可得出结果;(2)根据(1)的结果,结合平均数与方差的意义,即可得出结果.【详解】(1)由题中数据可得:;,所以,;(2)两台机床所加工零件的直径的平均值相同,又所以乙机床加工零件的质量更稳定.【点睛】本题主要考查平均数与方差,熟记公式即可,属于常考题型.18、(1),(2)【解析】

(1)根据等差数列的通项公式求出首项,公差和等比数列的通项公式求出首项,公比即可.

(2)由用错位相减法求和.【详解】(1)在等差数列中,设首项为,公差为.由,有,解得:所以又设的公比为,由,,得所以.(2)…………………①……………②由①-②得所以【点睛】本题考查求等差、等比数列的通项公式和用错位相减法求和,属于中档题.19、(1);(2).【解析】

(1)根据、两点的坐标,得到斜率,再由点斜式得到直线方程;(2)根据的倾斜角和过点,得到的方程,再与直线联立,得到交点坐标.【详解】(1)因为点,,所以,所以方程为,整理得;(2)因为直线l经过,且倾斜角为,所以直线的斜率为,所以的方程为,整理得,所以直线与直线的交点为,解得,所以交点坐标为.【点睛】本题考查点斜式求直线方程,求直线的交点坐标,属于简单题.20、(1)(2)【解析】

(1)由第n个半圆的周长得,再利用无穷等比数列求和即可(2)由第n个半圆的面积得,再利用无穷等比数列求和即可【详解】(1)由题意知,圆的半径满足数列,设第n个半圆的周长为,所以,则所有这些半圆围成的封闭图形的周长.(2)题意知,设第n个半圆的面积为,则,所以所有这些半圆围成的封闭图形的面积将为.【点睛】本题考查无穷等比数列的和,注意圆的半径为等比数列,是周长及面积的考查,是基础题21、(Ⅰ)(Ⅱ)(Ⅲ)【解析】

(Ⅰ)由圆的方程得到圆心坐标和;根据、为等腰直角三角形可知,从而得到,解方程求得结果;(Ⅱ)设直线方程为;利用点到直线距离公式求得圆心到直线距离;由垂径定理可得到,利用可构造不等式求得结果;(Ⅲ)直线方程与圆方程联立,根据直线与圆有两个交点可根据得到的取值范围;设,,利用韦达定理求得,并利用求得,即可得到;利用向量共线定理可得到关于的方程,解方程求得满足取值范围的结果.【详解】(Ⅰ)由圆得:圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论