版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届天津市军粮城第二中学高一下数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若是第四象限角,则是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角2.某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一个容量为20的样本,则抽取管理人员()A.3人 B.4人 C.7人 D.12人3.已知直线平面,直线平面,下列四个命题中正确的是().()()()()A.()与() B.()与() C.()与() D.()与()4.如右图所示的直观图,其表示的平面图形是(A)正三角形(B)锐角三角形(C)钝角三角形(D)直角三角形5.集合,,则=()A. B. C. D.6.直线的倾斜角的取值范围是()A. B. C. D.7.设是空间四个不同的点,在下列命题中,不正确的是A.若与共面,则与共面B.若与是异面直线,则与是异面直线C.若==,则D.若==,则=8.已知、是圆:上的两个动点,,,若是线段的中点,则的值为()A. B. C. D.9.在中,设角的对边分别为.若,则是()A.等腰直角三角形 B.直角三角形C.等腰三角形 D.等腰三角形或直角三角形10.已知函数的图像关于直线对称,则可能取值是().A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在正方体中,点是线段上的动点,则直线与平面所成的最大角的余弦值为________.12.己知是等差数列,是其前项和,,则______.13.函数的最小值为____________.14.某几何体是由一个正方体去掉一个三棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积是___15.如图,圆锥形容器的高为圆锥内水面的高为,且,若将圆锥形容器倒置,水面高为,则等于__________.(用含有的代数式表示)16.已知数列:,,,,,,,,,,,,,,,,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,矩形中,平面,,为上的点,且平面,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.18.在公差是整数的等差数列中,,且前项和.(1)求数列的通项公式;(2)令,求数列的前项和.19.已知向量=,=,=,为坐标原点.(1)若△为直角三角形,且∠为直角,求实数的值;(2)若点、、能构成三角形,求实数应满足的条件.20.如图,在正三棱柱中,边的中点为,.⑴求三棱锥的体积;⑵点在线段上,且平面,求的值.21.如果定义在上的函数,对任意的,都有,则称该函数是“函数”.(I)分别判断下列函数:①;②;③,是否为“函数”?(直接写出结论)(II)若函数是“函数”,求实数的取值范围.(III)已知是“函数”,且在上单调递增,求所有可能的集合与
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
利用象限角的表示即可求解.【详解】由是第四象限角,则,所以,所以是第三象限角.故选:C【点睛】本题考查了象限角的表示,属于基础题.2、B【解析】
根据分层抽样原理求出应抽取的管理人数.【详解】根据分层抽样原理知,应抽取管理人员的人数为:故选:B【点睛】本题考查了分层抽样原理应用问题,是基础题.3、D【解析】
∵直线l⊥平面α,若α∥β,则直线l⊥平面β,又∵直线m⊂平面β,∴l⊥m,即(1)正确;∵直线l⊥平面α,若α⊥β,则l与m可能平行、异面也可能相交,故(2)错误;∵直线l⊥平面α,若l∥m,则m⊥平面α,∵直线m⊂平面β,∴α⊥β;故(3)正确;∵直线l⊥平面α,若l⊥m,则m∥α或m⊂α,则α与β平行或相交,故(4)错误;故选D.4、D【解析】略5、C【解析】
根据交集定义直接求解可得结果.【详解】根据交集定义知:故选:【点睛】本题考查集合运算中的交集运算,属于基础题.6、B【解析】
由直线的方程可确定直线的斜率,可得其范围,进而可求倾斜角的取值范围.【详解】解:直线的斜率为,,根据正切函数的性质可得倾斜角的取值范围是故选:.【点睛】本题考查直线的斜率与倾斜角的关系,属于基础题.7、D【解析】
由空间四点共面的判断可是A,B正确,;C,D画出图形,可以判定AD与BC不一定相等,证明BC与AD一定垂直.【详解】对于选项A,若与共面,则与共面,正确;对于选项B,若与是异面直线,则四点不共面,则与是异面直线,正确;如图,空间四边形ABCD中,AB=AC,DB=DC,则AD与BC不一定相等,∴D错误;对于C,当四点共面时显然成立,当四点不共面时,取BC的中点M,连接AM、DM,AM⊥BC,DM⊥BC,∴BC⊥平面ADM,∴BC⊥AD,∴C正确;【点睛】本题通过命题真假的判定,考查了空间中的直线共面与异面以及垂直问题,是综合题.8、A【解析】由题意得,所以,选A.9、D【解析】
根据正弦定理,将等式中的边a,b消去,化为关于角A,B的等式,整理化简可得角A,B的关系,进而确定三角形.【详解】由题得,整理得,因此有,可得或,当时,为等腰三角形;当时,有,为直角三角形,故选D.【点睛】这一类题目给出的等式中既含有角又含有边的关系,通常利用正弦定理将其都化为关于角或者都化为关于边的等式,再根据题目要求求解.10、D【解析】
根据正弦型函数的对称性,可以得到一个等式,结合四个选项选出正确答案.【详解】因为函数的图像关于直线对称,所以有,当时,,故本题选D.【点睛】本题考查了正弦型函数的对称性,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
作的中心,可知平面,所以直线与平面所成角为,当在中点时,最大,求出即可。【详解】设正方体的边长为1,连接,由于为正方体,所以为正四面体,棱长为,为等边三角形,作的中心,连接,,由于为正四面体,为的中心,所以平面,所以为直线与平面所成角,则当在中点时,最大,当在中点时,由于为正四面体,棱长为,等边三角形,为的中心,所以,,所以直线与平面所成的最大角的余弦值为故直线与平面所成的最大角的余弦值为故答案为【点睛】本题考查线面所成角,解题的关键是确定当在中点时,最大,考查学生的空间想象能力以及计算能力。12、-1【解析】
由等差数列的结合,代入计算即可.【详解】己知是等差数列,是其前项和,所以,得,由等差中项得,所以.故答案为-1【点睛】本题考查了等差数列前项和公式和等差中项的应用,属于基础题.13、【解析】
将函数构造成的形式,用换元法令,在定义域上根据新函数的单调性求函数最小值,之后可得原函数最小值。【详解】由题得,,令,则函数在递增,可得的最小值为,则的最小值为.故答案为:【点睛】本题考查了换元法,以及函数的单调性,是基础题。14、6【解析】
先作出几何体图形,再根据几何体的体积等于正方体的体积减去三棱柱的体积计算.【详解】几何体如图所示:去掉的三棱柱的高为2,底面面积是正方体底面积的,所以三棱柱的体积:所以几何体的体积:【点睛】本题考查三视图与几何体的体积.关键是作出几何体的图形,方法:先作出正方体的图形,再根据三视图“切”去多余部分.15、【解析】
根据水的体积不变,列出方程,解出的值,即可得到答案.【详解】设圆锥形容器的底面面积为,则未倒置前液面的面积为,所以水的体积为,设倒置后液面面积为,则,所以,所以水的体积为,所以,解得.【点睛】本题主要考查了圆锥的结构特征,以及圆锥的体积的计算与应用,其中解答中熟练应用圆锥的结构特征,利用体积公式准确运算是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.16、【解析】
根据数列的规律和可知的取值为,则分母为;又为分母为的项中的第项,则分子为,从而得到结果.【详解】当时,;当时,的分母为:又的分子为:本题正确结果:【点睛】本题考查根据数列的规律求解数列中的项,关键是能够根据分子的变化特点确定的取值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)先证明,再证明平面;(Ⅱ)由等积法可得即可求解.【详解】(Ⅰ)因为是中点,又因为平面,所以,由已知,所以是中点,所以,因为平面,平面,所以平面.(Ⅱ)因为平面,,所以平面,则,又因为平面,所以,则平面,由可得平面,因为,此时,,所以.【点睛】本题主要考查线面平行的判定及利用等积法求三棱锥的体积问题,属常规考题.18、(1);(2).【解析】
(1)设等差数列的公差为,由题意知,的最小值为,可得出,可得出的取值范围,结合,可求出的值,再利用等差数列的通项公式可求出;(2)将数列的通项公式表示为分段形式,即,于是得出可得出的表达式.【详解】(1)设等差数列的公差为,则,由题意知,的最小值为,则,,所以,解得,,,因此,;(2).当时,,则,;当时,,则,.综上所述:.【点睛】本题考查等差数列通项公式以及绝对值分段求和,解题的关键在于将的最小值转化为与项相关的不等式组进行求解,考查化归与转化数学思想,属于中等题.19、(1);(2)【解析】
(1)利用向量的运算法则求出,,再利用向量垂直的充要条件列出方程求出m;(2)由题意得A,B,C三点不共线,则与不共线,列出关于m的不等式即可.【详解】(1)因为=,=,=,所以,,若△ABC为直角三角形,且∠A为直角,则,∴3(2﹣m)+(1﹣m)=0,解得.(2)若点A,B,C能构成三角形,则这三点不共线,即与不共线,得3(1﹣m)≠2﹣m,∴实数时,满足条件.【点睛】本题考查向量垂直、向量共线的充要条件、利用向量共线解决三点共线、三点不共线等问题,属于基础题.20、(1)(2)【解析】
(1)由题可得平面,故,从而求得三棱锥的体积;(2)连接交于,连接交于,连结,由平面可得,由正三棱柱的性质可得,从而得到的值.【详解】⑴因为为正三棱柱所以平面⑵连接交于,连接交于,连结因为//平面,平面,平面平面,所以,因为为正三棱柱,所以侧面和侧面为平行四边形,从而有为的中点,于是为的中点所以,因为为边的中点,所以也为边中点,从而【点睛】本题考查三棱锥的体积,线面垂直的性质,正三棱柱的性质等知识,属于中档题.21、(I)①、②是“函数”,③不是“函数”;(II)的取值范围为;(III),【解析】试题分析:(1)根据“β函数”的定义判定.①、②是“β函数”,③不是“β函数”;(2)由题意,对任意的x∈R,f(﹣x)+f(x)≠0,故f(﹣x)+f(x)=2cosx+2a由题意,对任意的x∈R,2cosx+2a≠0,即a≠﹣cosx即可得实数a的取值范围(3)对任意的x≠0,分(a)若x∈A且﹣x∈A,(b)若x∈B且﹣x∈B,验证。(I)①、②是“函数”,③不是“函数”.(II)由题意,对任意的,,即.因为,所以.故.由题意,对任意的,,即.故实数的取值范围为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司新推出劳务分包合同
- 大客户采购合同的签订技巧
- 短期借款合同范文
- 终止房屋租赁合同的协议
- 地毯生产流程合同
- 复垦质量守诺
- 租赁仓库续约延期事项
- 房江湖服务合同贴心提示
- 法庭证人责任书
- 高校图书采购合同
- 高中家长给孩子寄语
- 药物警戒体系主文件(根据指南撰写)
- 2022重症医学科优质护理工作计划
- 系列压路机xmr30s40s操作保养手册
- 广州教科版六年级英语上册M1-6复习练习题(含答案)
- GB/T 24159-2022焊接绝热气瓶
- GB/T 22412-2016普通装饰用铝塑复合板
- GB/T 20388-2006纺织品邻苯二甲酸酯的测定
- GB/T 18370-2014玻璃纤维无捻粗纱布
- GB 7681-2008铡草机安全技术要求
- 门窗安装施工组织设计方案
评论
0/150
提交评论