版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市丰台区北京第十二中学2025届高一下数学期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图,正方体ABCD﹣A1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论中错误的是()A.AE∥平面C1BDB.四面体ACEF的体积不为定值C.三棱锥A﹣BEF的体积为定值D.四面体ACDF的体积为定值2.在等差数列中,若,则()A.10 B.15 C.20 D.253.已知扇形的半径为,圆心角为,则该扇形的面积为()A. B. C. D.4.已知直线的方程为,则该直线的倾斜角为()A. B. C. D.5.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为A. B. C. D.6.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织()尺布.A. B. C. D.7.设,则()A.3 B.2 C.1 D.08.在数列中,,则数列的前n项和的最大值是()A.136 B.140 C.144 D.1489.已知,,当时,不等式恒成立,则的取值范围是A. B. C. D.10.函数的简图是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.12.△ABC中,,,则=_____.13.已知,,且,若恒成立,则实数的取值范围是____.14._______________.15.已知正实数x,y满足,则的最小值为________.16.若点在幂函数的图像上,则函数的反函数=________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是等差数列,设数列的前n项和为,且,,又,.(1)求和的通项公式;(2)令,求的前n项和.18.如图,正方体.(1)求证:平面;(2)求异面直线AC与所成角的大小.19.如图,在三棱柱中,平面平面,,,为棱的中点.(1)证明:;(2)求点到平面的距离.20.已知向量且,(1)求向量与的夹角;(2)求的值.21.如图,四边形ABCD是平行四边形,点E,F,G分别为线段BC,PB,AD的中点.(1)证明:EF∥平面PAC;(2)证明:平面PCG∥平面AEF;(3)在线段BD上找一点H,使得FH∥平面PCG,并说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据面面平行的性质定理,判断A选项是否正确,根据锥体体积计算公式,判断BCD选项是否正确.【详解】对于A选项,易得平面与平面平行,所以平面成立,A选项结论正确.对于B选项,由于长度一定,所以三角形面积为定值.到平面的距离,也即到平面的距离一定,所以四面体体积为定值,故B选项结论错误.对于C选项,由于长度一定,所以三角形面积为定值.到平面的距离,也即到平面的距离一定,所以三棱锥体积为定值,故C选项结论正确.对于D选项,由于三角形面积为定值,到平面的距离为定值,所以四面体的体积为定值.综上所述,错误的结论为B选项.故选:B【点睛】本小题主要考查利用面面平行证明线面平行,考查三棱锥(四面体)体积的计算,考查空间想象能力和逻辑推理能力,属于基础题.2、C【解析】
设等差数列的公差为,得到,又由,代入即可求解,得到答案.【详解】由题意,设等差数列的公差为,则,又由,故选C.【点睛】本题主要考查了等差数列的通项公式的应用,其中解答中熟记等差数列的通项公式,准确计算是解答的关键,着重考查了计算与求解能力,属于基础题,.3、A【解析】
化圆心角为弧度值,再由扇形面积公式求解即可.【详解】扇形的半径为,圆心角为,即,该扇形的面积为,故选.【点睛】本题主要考查扇形的面积公式的应用.4、B【解析】试题分析:直线的斜率,其倾斜角为.考点:直线的倾斜角.5、C【解析】选取两支彩笔的方法有种,含有红色彩笔的选法为种,由古典概型公式,满足题意的概率值为.本题选择C选项.考点:古典概型名师点睛:对于古典概型问题主要把握基本事件的种数和符合要求的事件种数,基本事件的种数要注意区别是排列问题还是组合问题,看抽取时是有、无顺序,本题从这5支彩笔中任取2支不同颜色的彩笔,是组合问题,当然简单问题建议采取列举法更直观一些.6、B【解析】由题可知每天织的布的多少构成等差数列,其中第一天为首项,一月按30天计可得,从第2天起每天比前一天多织的即为公差.又,解得.故本题选B.7、B【解析】
先求内层函数,将所求值代入分段函数再次求解即可【详解】,则故选:B【点睛】本题考查分段函数具体函数值的求法,属于基础题8、C【解析】
可得数列为等差数列且前8项为正数,第9项为0,从第10项开始为负数,可得前8或9项和最大,由求和公式计算可得.【详解】解:∵在数列中,,
,即数列为公差为−4的等差数列,
,
令可得,
∴递减的等差数列中前8项为正数,第9项为0,从第10项开始为负数,
∴数列的前8或9项和最大,
由求和公式可得
故选:C.【点睛】本题考查等差数列的求和公式和等差数列的判定,属基础题.9、B【解析】
根据为定值,那么乘以后值不变,由基本不等式可消去x,y后,对得到的不等式因式分解,即可解得m的值.【详解】因为,,,所以.因为不等式恒成立,所以,整理得,解得,即.【点睛】本题考查基本不等式,由为定值和已知不等式相乘来构造基本不等式,最后含有根式的因式分解也是解题关键.10、D【解析】
变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】正方体体积为8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π.故答案为:12π.点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.12、【解析】试题分析:三角形中,,由,得又,所以有正弦定理得即即A为锐角,由得,因此考点:正余弦定理13、(-4,2)【解析】试题分析:因为当且仅当时取等号,所以考点:基本不等式求最值14、2【解析】
利用裂项求和法将化简为,再求极限即可.【详解】令...故答案为:【点睛】本题主要考查数列求和中的列项求和,同时考查了极限的求法,属于中档题.15、4【解析】
将变形为,展开,利用基本不等式求最值.【详解】解:,当时等号成立,又,得,此时等号成立,故答案为:4.【点睛】本题考查基本不等式求最值,特别是掌握“1”的妙用,是基础题.16、【解析】
根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】
(1)运用数列的递推式,以及等比数列的通项公式可得,是等差数列,运用等差数列的通项公式可得首项和公差,可得所求通项公式;(2)求得,由数列的错位相减法求和,结合等比数列的求和公式,即可得到所求和.【详解】(1)当时,;当时,,且相减可得:故:是公差为d的等差数列,,即为:.(2),前n项和:两式相减可得:化简可得:【点睛】本题考查了数列综合问题,考查了等差等比数列的通项公式,项和转化,乘公比错位相减等知识点,属于较难题.18、(1)见解析(2)【解析】
(1)证明,,即得证;(2)求出即得异面直线AC与所成角的大小.【详解】(1)证明:因为为正方体,所以ABCD为正方形.所以,又因为平面ABCD,平面ABCD,故,又,平面,所以平面.(2)因为,所以直线AC与所成的角或补角即为AC与的角,又三角形为等边三角形,所以,即直线AC与所成的角为.【点睛】本题主要考查线面位置关系的证明,考查异面直线所成角的计算,意在考查学生对这些知识的理解掌握水平.19、(1)见解析;(2)【解析】
(1)作为棱的中点,连结,,通过证明平面可得.(2)根据等体积法:可求得.【详解】(1)证明:连接,.∵,,∴是等边三角形.作为棱的中点,连结,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴是菱形.∴.又,分别为,的中点,∴,∴.又,∴平面.又平面,∴.(2)解:连接,∵,,∴为正三角形.∵为的中点,∴.又∵平面平面,且平面平面,平面,∴平面.∴.设点到平面,的距离.在中,,,则.又∵,∴,则.【点睛】本题考查了直线与平面垂直的判定与性质,考查了等体积法求点面距,属于中档题.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用平面向量的数量积的运算法则化简,进而求出向量与的夹角;(Ⅱ)利用,对其化简,代入数值,即可求出结果.【详解】解:(Ⅰ)由得因向量与的夹角为(Ⅱ)【点睛】本题考查平面向量的数量积的应用,以及平面向量的夹角以及平面向量的模的求法,考查计算能力.21、(1)见解析(2)见解析(3)见解析【解析】
(1)证明,EF∥平面PAC即得证;(2)证明AE∥平面PCG,EF∥平面PCG,平面PCG∥平面AEF即得证;(3)设AE,GC与BD分别交于M,N两点,证明N点为所找的H点.【详解】(1)证明:∵E、F分别是BC,BP中点,∴,∵PC⊂平面PAC,EF⊄平面PAC,∴EF∥平面PAC.(2)证明:∵E、G分别是BC、AD中点,∴A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年行政行为法律文书制作与档案管理合同3篇
- 二零二五年度物流仓储代理服务合同范本4篇
- 2025年度智慧农业项目投资合作协议范本4篇
- 2025年度商业房产买卖合同违约金条款及执行4篇
- 专业资产评估服务协议模板2024版版B版
- 二零二五版个人年收入证明样本与合同规范3篇
- 2025年有机水果直供社区团购服务合同3篇
- 二零二五版个人消费信贷反担保服务合同3篇
- 2025年社区宣传栏升级改造及内容更新服务合同2篇
- 2025年度煤炭交易市场准入与监管协议4篇
- 安徽省示范高中2024-2025学年高一(上)期末综合测试物理试卷(含答案)
- 安徽省合肥市包河区2023-2024学年九年级上学期期末化学试题
- 《酸碱罐区设计规范》编制说明
- PMC主管年终总结报告
- 售楼部保安管理培训
- 仓储培训课件模板
- 2025届高考地理一轮复习第七讲水循环与洋流自主练含解析
- GB/T 44914-2024和田玉分级
- 2024年度企业入驻跨境电商孵化基地合作协议3篇
- 《形势与政策》课程标准
- 2023年海南省公务员录用考试《行测》真题卷及答案解析
评论
0/150
提交评论