版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省洛阳市理工学院附中数学高一下期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在中,,则的形状是A.锐角三角形 B.钝角三角形C.等腰三角形 D.直角三角形2.在中,若,,,则()A., B.,C., D.,3.如图,点为正方形的中心,为正三角形,平面平面是线段的中点,则()A.,且直线是相交直线B.,且直线是相交直线C.,且直线是异面直线D.,且直线是异面直线4.下列说法正确的是()A.命题“若,则.”的否命题是“若,则.”B.是函数在定义域上单调递增的充分不必要条件C.D.若命题,则5.若展开式中的系数为-20,则等于()A.-1 B. C.-2 D.6.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.7.我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤”,若该金锤从头到尾,每一尺的重量构成等差数列,该金锤共重多少斤?()A.6斤 B.7斤 C.9斤 D.15斤8.三棱锥则二面角的大小为()A. B. C. D.9.如图,在平行四边形中,下列结论中错误的是()A. B. C. D.10.已知数列的前项和为,且,,则()A.200 B.210 C.400 D.410二、填空题:本大题共6小题,每小题5分,共30分。11.若在区间(且)上至少含有30个零点,则的最小值为_____.12.一条河的两岸平行,河的宽度为560m,一艘船从一岸出发到河对岸,已知船的静水速度,水流速度,则行驶航程最短时,所用时间是__________(精确到).13.已知向量、满足:,,,则_________.14.若,则__________.(结果用反三角函数表示)15.函数的值域为______.16.在空间直角坐标系中,点关于原点的对称点的坐标为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列中,已知,.(I)求数列的通项公式;(II)求.18.已知关于的不等式.(1)若不等式的解集为,求实数的值;(2)若不等式的解集为,求实数的取值范围.19.已知角的顶点与原点重合,始边与轴的非负半轴重合,终边过点.(1)求的值;(2)已知为锐角,,求的值.20.己知数列是等比数列,且公比为,记是数列的前项和.(1)若=1,>1,求的值;(2)若首项,,是正整数,满足不等式|﹣63|<62,且对于任意正整数都成立,问:这样的数列有几个?21.在△ABC中,角A,B,C对应的边分别是a,b,c,已知cos2A﹣3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面积S=5,b=5,求sinBsinC的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
利用正弦定理可将已知中的等号两边的“边”转化为它所对角的正弦,再利用余弦定理化简即得该三角形的形状.【详解】根据正弦定理,原式可变形为:所以整理得.故选.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平和分析推理能力.2、A【解析】
利用正弦定理列出关系式,把与代入得出与的关系式,再与已知等式联立求出即可.【详解】∵在中,,,,∴由正弦定理得:,即,联立解得:.故选:A.【点睛】本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于基础题.3、B【解析】
利用垂直关系,再结合勾股定理进而解决问题.【详解】如图所示,作于,连接,过作于.连,平面平面.平面,平面,平面,与均为直角三角形.设正方形边长为2,易知,.,故选B.【点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角性.4、D【解析】“若p则q”的否命题是“若则”,所以A错。在定义上并不是单调递增函数,所以B错。不存在,C错。全称性命题的否定是特称性命题,D对,选D.5、A【解析】由,可得将选项中的数值代入验证可得,符合题意,故选A.6、C【解析】
本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案.【详解】如图所示,直角三角形的斜边长为,设内切圆的半径为,则,解得.所以内切圆的面积为,所以豆子落在内切圆外部的概率,故选C.【点睛】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.7、D【解析】
直接利用等差数列的求和公式求解即可.【详解】因为每一尺的重量构成等差数列,,,,数列的前5项和为.即金锤共重15斤,故选D.【点睛】本题主要考查等差数列求和公式的应用,意在考查运用所学知识解答实际问题的能力,属于基础题.8、B【解析】
P在底面的射影是斜边的中点,设AB中点为D过D作DE垂直AC,垂足为E,则∠PED即为二面角P﹣AC﹣B的平面角,在直角三角形PED中求出此角即可.【详解】因为AB=10,BC=8,CA=6所以底面为直角三角形又因为PA=PB=PC所以P在底面的射影为直角三角形ABC的外心,为AB中点.设AB中点为D过D作DE垂直AC,垂足为E,所以DE平行BC,且DEBC=4,所以∠PED即为二面角P﹣AC﹣B的平面角.因为PD为三角形PAB的中线,所以可算出PD=4所以tan∠PED所以∠PED=60°即二面角P﹣AC﹣B的大小为60°故答案为60°.【点睛】本题考查的知识点是二面角的平面角及求法,确定出二面角的平面角是解答本题的关键.9、C【解析】
根据向量的定义及运算法则一一分析选项正误即可.【详解】在平行四边形中,显然有,,故A,D正确;根据向量的平行四边形法则,可知,故B正确;根据向量的三角形法,,故C错误;故选:C.【点睛】本题考查平面向量的基本定义和运算法则,属于基础题.10、B【解析】
首先利用递推关系式求出数列的通项公式,进一步利用等差数列的前项和公式的应用求出结果.【详解】由题,,又因为所以当时,可解的当时,,与相减得当为奇数时,数列是以为首相,为公差的等差数列,当为偶数时,数列是以为首相,为公差的等差数列,所以当为正整数时,,则故选B.【点睛】本题考查的知识点有数列通项公式的求法及应用,等差数列的前项和公式的应用,主要考查学生的运算能力和转化能力,属于一般题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
首先求出在上的两个零点,再根据周期性算出至少含有30个零点时的值即可【详解】根据,即,故,或,∵在区间(且)上至少含有30个零点,∴不妨假设(此时,),则此时的最小值为,(此时,),∴的最小值为,故答案为:【点睛】本题函数零点个数的判断,解决此类问题通常结合周期、函数图形进行解决。属于难题。12、6【解析】
先确定船的方向,再求出船的速度和时间.【详解】因为行程最短,所以船应该朝上游的方向行驶,所以船的速度为km/h,所以所用时间是.故答案为6【点睛】本题主要考查平面向量的应用,意在考查学生对该知识的理解掌握水平,属于基础题.13、.【解析】
将等式两边平方得出的值,再利用结合平面向量的数量积运算律可得出结果.【详解】,,,因此,,故答案为.【点睛】本题考查利用平面向量数量积来计算平面向量的模,在计算时,一般将平面向量的模平方,利用平面向量数量积的运算律来进行计算,考查运算求解能力,属于中等题.14、;【解析】
由条件利用反三角函数的定义和性质即可求解.【详解】,则,故答案为:【点睛】本题考查了反三角函数的定义和性质,属于基础题.15、【解析】
由反三角函数的性质得到,即可求得函数的值域.【详解】由,则,,又,,即,函数的值域为.故答案:.【点睛】本题考查反三角函数的性质及其应用,属于基础题.16、【解析】
空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.【详解】空间直角坐标系中,关于原点对称,每个坐标变为原来的相反数.点关于原点的对称点的坐标为故答案为:【点睛】本题考查了空间直角坐标系关于原点对称,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(I)将已知条件转为关于首项和公差的方程组,解方程组求出,进而可求通项公式;(II)由已知可得构成首项为,公差为的等差数列,利用等差数列前n项和公式计算即可.【详解】(I)因为是等差数列,,所以解得.则,.(II)构成首项为,公差为的等差数列.则【点睛】本题考查等差数列通项公式和前n项和公式的应用,属于基础题.18、(1)(2)【解析】
(1)不等式的解集为说明和1是的两个实数根,运用韦达定理,可以求出实数的值;(2)不等式的解集为,只需,或即可,解不等式组求出实数的取值范围.【详解】(1)若关于的不等式的解集为,则和1是的两个实数根,由韦达定理可得,求得.(2)若关于的不等式解集为,则,或,求得或,故实数的取值范围为.【点睛】本题考查了已知一元二次不等式的解集求参问题,考查了数学运算能力19、(1);(2).【解析】
(1)利用三角函数的定义可求出,再根据二倍角的余弦公式即可求解.(2)由(1)可得,再利用同角三角函数的基本关系可得,由,利用两角差的正切公式即可求解.【详解】解:(1)依题意得,,,所以.(2)由(1)得,,故.因为,,,所以,又因为,所以,.所以,所以.【点睛】本小题主要考查同角三角函数关系、三角恒等变换等基础知识,考查运算求解能力、推理论证能力,考查化归与转化思想等.20、(1);(2)114【解析】
(1)利用等比数列的求和公式,进而可求的值;(2)根据满足不等式|﹣63|<62,可确定的范围,进而可得随着的增大而增大,利用,可求解.【详解】(1)已知数列是等比数列,且公比为,记是数列的前项和,=1,,,则;(2)满足不等式|﹣63|<62,.,,且,,得随着的增大而增大,得,又且对于任意正整数都成立,得,,且是正整数,满足的个数为:124﹣11+1=114个,即有114个,所以有114个数列.【点睛】本题以等比数列为载体,考查数列的极限,考查等比数列的求和,考查数列的单调性,属于中档题.21、(1)(2)【解析】试题分析:(1)根据二倍角公式,三角形内角和,所以,整理为关于的二次方程,解得角的大小;(2)根据三角形的面积公式和上一问角,代入后解得边,这样就知道,然后根据余弦定理再求,最后根据证得定理分别求得和.试题解析:(1)由cos2A-3cos(B+C)=1,得2cos2A+3cosA-2=0,即(2cosA-1)(cosA+2)=0,解得cosA=或cosA=-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版汽车销售合同范本
- 2024陕西智能制造行业劳动合同范本3篇
- 二零二五年度餐饮品牌加盟店合同范本3篇
- 2024版施工工程劳务分包合同
- 二零二五年高温高压管道材料购销合同2篇
- 专用仓储物流仓库建设施工协议模板版B版
- 二零二五版国有企业员工劳动合同解除与经济补偿协议3篇
- 二零二五版个人购房贷款担保与房屋权属登记服务合同3篇
- 2024版代生产加工服务合同范本2篇
- 二零二五年度特色餐饮品牌加盟保密合同范本3篇
- 五年(2020-2024)高考地理真题分类汇编(全国版)专题12区域发展解析版
- 酒店会议室设备安装及调试方案
- 2024年新疆(兵团)公务员考试《行测》真题及答案解析
- 《阻燃材料与技术》课件 第8讲 阻燃木质材料
- JGJ120-2012建筑基坑支护技术规程-20220807013156
- 英语代词专项训练100(附答案)含解析
- GB/T 4732.1-2024压力容器分析设计第1部分:通用要求
- 《采矿工程英语》课件
- NB-T31045-2013风电场运行指标与评价导则
- NB-T+10488-2021水电工程砂石加工系统设计规范
- 天津市和平区2023-2024学年七年级下学期6月期末历史试题
评论
0/150
提交评论