河北省唐山市玉田县高级中学2025届数学高一下期末统考模拟试题含解析_第1页
河北省唐山市玉田县高级中学2025届数学高一下期末统考模拟试题含解析_第2页
河北省唐山市玉田县高级中学2025届数学高一下期末统考模拟试题含解析_第3页
河北省唐山市玉田县高级中学2025届数学高一下期末统考模拟试题含解析_第4页
河北省唐山市玉田县高级中学2025届数学高一下期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省唐山市玉田县高级中学2025届数学高一下期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,则在方向上的投影为()A. B. C. D.2.已知,且,则实数的值为()A.2 B. C.3 D.3.若,,且与夹角为,则()A.3 B. C.2 D.4.圆心坐标为,半径长为2的圆的标准方程是()A. B.C. D.5.已知等差数列的前项和为,且,则满足的正整数的最大值为()A.16 B.17 C.18 D.196.如图,位于处的海面观测站获悉,在其正东方向相距40海里的处有一艘渔船遇险,并在原地等待营救.在处南偏西且相距20海里的处有一救援船,其速度为海里小时,则该船到求助处的时间为()分钟.A.24 B.36 C.48 D.607.边长为2的正方形内有一封闭曲线围成的阴影区域.向正方形中随机地撒200粒芝麻,大约有80粒落在阴影区域内,则此阴影区域的面积约为()A. B. C. D.8.某程序框图如图所示,则该程序运行后输出的值是()A. B. C. D.9.设变量满足约束条件,则目标函数的最小值为()A. B. C. D.210.在中,为线段上的一点,,且,则A., B.,C., D.,二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列的公比为,关于的不等式有下列说法:①当吋,不等式的解集②当吋,不等式的解集为③当>0吋,存在公比,使得不等式解集为④存在公比,使得不等式解集为R.上述说法正确的序号是_______.12.将正整数按下图方式排列,2019出现在第行第列,则______;12345678910111213141516………13.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经榫卯起来,如图3,若正四棱柱体的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为__________.(容器壁的厚度忽略不计)14.的内角的对边分别为.若,则的面积为__________.15.若数列的前项和,满足,则______.16.在中,、、所对的边依次为、、,且,若用含、、,且不含、、的式子表示,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在直三棱柱中,,,M、N分别为、的中点.求证:平面;求证:平面.18.已知向量,,.(1)若,求的值;(2)若,,求的值.19.如图所示,某住宅小区的平面图是圆心角为120°的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路,已知某人从沿走到用了10分钟,从沿走到用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径的长.20.如图,三棱柱,底面,且为正三角形,,,为中点.(1)求证:直线平面;(2)求二面角的大小.21.在中,角的平分线交于点D,是面积的倍.(I)求的值;(II)若,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

直接利用向量的数量积和向量的投影的定义,即可求解,得到答案.【详解】由题意,向量,,则在方向上的投影为:.故选D.【点睛】本题主要考查了平面向量的数量积的应用,其中解答中熟记向量的数量积的运算公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解析】

根据二角和与差的正弦公式化简,,再切化弦,即可求解.【详解】由题意又解得故选:【点睛】本题考查两角和与差的正弦公式,属于基础题.3、B【解析】

由题意利用两个向量数量积的定义,求得的值,再根据,计算求得结果.【详解】由题意若,,且与夹角为,可得,.故选:B.【点睛】本题考查向量数量积的定义、向量的模的方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不要错选成A答案.4、C【解析】

根据圆的标准方程的形式写.【详解】圆心为,半径为2的圆的标准方程是.故选C.【点睛】本题考查了圆的标准方程,故选C.5、C【解析】

先由,得到,,,公差大于零,再由数列的求和公式,即可得出结果.【详解】由得,,,,所以公差大于零.又,,,故选C.【点睛】本题主要考查等差数列的应用,熟记等差数列的性质与求和公式即可,属于常考题型.6、A【解析】

利用余弦定理求出的长度,然后根据速度、时间、路程之间的关系求出时间即可.【详解】由题意可知:,运用余弦定理可知:该船到求助处的时间,故本题选A.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.7、B【解析】

依题意得,豆子落在阴影区域内的概率等于阴影部分面积与正方形面积之比,即可求出结果.【详解】设阴影区域的面积为,由题意可得,则.故选:B.【点睛】本题考查随机模拟实验,根据几何概型的意义进行模拟实验计算阴影部分面积,关键在于掌握几何概型的计算公式.8、D【解析】

由题意首先确定流程图的功能,然后结合三角函数的性质求解所要输出的结果即开即可.【详解】根据程序框图知,该算法的目标是计算和式:.又因为,注意到,故:.故选:D.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.9、B【解析】

根据不等式组画出可行域,数形结合解决问题.【详解】不等式组确定的可行域如下图所示:因为可化简为与直线平行,且其在轴的截距与成正比关系,故当且仅当目标函数经过和的交点时,取得最小值,将点的坐标代入目标函数可得.故选:B.【点睛】本题考查常规线性规划问题,属基础题,注意数形结合即可.10、A【解析】

根据相等向量的定义及向量的运算法则:三角形法则求出,利用平面向量基本定理求出x,y的值【详解】由题意,∵,∴,即,∴,即故选A.【点睛】本题以三角形为载体,考查向量的加法、减法的运算法则;利用运算法则将未知的向量用已知向量表示,是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、③【解析】

利用等比数列的通项公式,解不等式后可得结论.【详解】由题意,不等式变为,即,若,则,当或时解为,当或时,解为,时,解为;若,则,当或时解为,当或时,解为,时,不等式无解.对照A、B、C、D,只有C正确.故选C.【点睛】本题考查等比数列的通项公式,考查解一元二次不等式,难点是解一元二次不等式,注意分类讨论,本题中需对二次项系数分正负,然后以要对两根分大小,另外还有一个是相应的一元二次方程是否有实数解分类(本题已经有两解,不需要这个分类).12、128【解析】

观察数阵可知:前行一共有个数,且第行的最后一个数为,且第行有个数,由此可推断出所在的位置.【详解】因为前行一共有个数,且第行的最后一个数为,又因为,所以在第行,且第45行最后数为,又因为第行有个数,,所以在第列,所以.故答案为:.【点睛】本题考查数列在数阵中的应用,着重考查推理能力,难度一般.分析数列在数阵中的应用问题,可从以下点分析问题:观察每一行数据个数与行号关系,同时注意每一行开始的数据或结尾数据,所有行数据的总个数,注意等差数列的求和公式的运用.13、【解析】表面积最小的球形容器可以看成长、宽、高分别为1、2、6的长方体的外接球.设其半径为R,,所以该球形容器的表面积的最小值为.【点睛】将表面积最小的球形容器,看成其中两个正四棱柱的外接球,求其半径,进而求体积.14、【解析】

本题首先应用余弦定理,建立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查.【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误.解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算.15、【解析】

令,得出,令,由可计算出在时的表达式,然后就是否符合进行检验,由此可得出.【详解】当时,;当时,则.也适合.综上所述,.故答案为:.【点睛】本题考查利用求,一般利用来计算,但需要对进行检验,考查计算能力,属于基础题.16、【解析】

利用诱导公式,二倍角公式,余弦定理化简即可得解.【详解】.故答案为.【点睛】本题主要考查了诱导公式,二倍角的三角函数公式,余弦定理,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】

(1)推导出,从而平面,进而,再由,,得是正方形,由此能证明平面.取的中点F,连BF、推导出四边形BMNF是平行四边形,从而,由此能证明平面.【详解】证明:在直三棱柱中,侧面底面ABC,且侧面底面,,即,平面,平面,,,是正方形,,平面取的中点F,连BF、在中,N、F是中点,,,又,,,,故四边形BMNF是平行四边形,,而面,平面,平面【点睛】本题考查线面垂直、线面平行的证明,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.18、(1);(2)或【解析】

(1)根据向量平行的坐标公式得出,利用二倍角公式以及弦化切即可得出答案;(2)利用向量的模长公式得出,由二倍角公式以及降幂公式,辅助角公式得出,结合正弦函数的性质得出的值.【详解】(1)由,得,所以.所以.(2)由,得所以,所以,所以.因为,所以,所以或解得或.【点睛】本题主要考查了由向量平行求参数,模长公式,简单的三角恒等变换以及正弦函数的性质的应用,属于中档题.19、【解析】

连接,由题意,得米,米,,在△中,由余弦定理可得答案.【详解】设该扇形的半径为米,连接,如图所示:由题意,得米,米,,在△中,由余弦定理得,即,解得米.答:该扇形的半径的长为米.【点睛】本题考查了利用余弦定理解三角形,将问题转化为在三角形中求解是解题关键,属于基础题.20、(1)证明见解析;(2).【解析】

(1)连交于,连,则点为中点,为中点,得,即可证明结论;(1)为正三角形,为中点,可得,再由底面,得底面,得,可证平面,有,为的平面角,解,即可求出结论.【详解】(1)连交于,连,三棱柱,侧面为平行四边形,所以点为中点,为中点,所以,因为平面,平面,所以直线平面;(2)为正三角形,为中点,可得,三棱柱,所以,底面,所以底面,底面,所以,又平面,所以平面,平面,所以,为的平面角,在中,,,所以,所以二面角的大小为.【点睛】本题考查线面平行的证明,用几何法求二面角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论