版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省梁河县一中2025届数学高一下期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,则向量的夹角为()A. B. C. D.2.在中,角的对边分别是,若,且三边成等比数列,则的值为()A. B. C.1 D.23.三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,则二面角V-AB-CA.30° B.45° C.60° D.90°4.若,是夹角为的两个单位向量,则与的夹角为()A. B. C. D.5.直线:与圆的位置关系为()A.相离 B.相切 C.相交 D.无法确定6.设函数,则()A.在单调递增,且其图象关于直线对称B.在单调递增,且其图象关于直线对称C.在单调递减,且其图象关于直线对称D.在单调递增,且其图象关于直线对称7.等比数列中,,,则公比等于()A.2 B.3 C. D.8.在等差数列中,若,且它的前项和有最大值,则使成立的正整数的最大值是()A.15 B.16 C.17 D.149.已知点是直线上一动点、是圆的两条切线,、是切点,若四边形的最小面积是,则的值为()A. B. C. D.10.若某扇形的弧长为,圆心角为,则该扇形的半径是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等差数列中,其前项和为,且,,当取最大值时,的值等于_____.12.已知,,,的等比中项是1,且,,则的最小值是______.13.若,则=_________________14.在中,角所对的边分别为.若,,则角的大小为____________________.15.把函数的图像上各点向右平移个单位,再把横坐标变为原来的一半,纵坐标扩大到原来的4倍,则所得的函数的对称中心坐标为________16.利用直线与圆的有关知识求函数的最小值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设数列的前项和为,点均在函数的图像上.(Ⅰ)求数列的通项公式;(Ⅱ)设,是数列的前项和,求使得对所有都成立的最小正整数.18.如图,四棱锥中,底面为矩形,面,为的中点.(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离.19.设函数.(1)求函数的最小正周期.(2)求函数的单调递减区间;(3)设为的三个内角,若,,且为锐角,求.20.如图,在三棱柱中,侧棱垂直于底面,,分别是的中点.(1)求证:平面;(2)求三棱锥的体积.21.在中,内角、、所对的边分别为,,,且满足.(1)求角的大小;(2)若,是方程的两根,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:,设向量的夹角为,考点:向量夹角及向量的坐标运算点评:设夹角为,2、C【解析】
先利用正弦定理边角互化思想得出,再利余弦定理以及条件得出可得出是等边三角形,于此可得出的值.【详解】,由正弦定理边角互化的思想得,,,,则.、、成等比数列,则,由余弦定理得,化简得,,则是等边三角形,,故选C.【点睛】本题考查正弦定理边角互化思想的应用,考查余弦定理的应用,解题时应根据等式结构以及已知元素类型合理选择正弦定理与余弦定理求解,考查计算能力,属于中等题.3、C【解析】
取AB中点O,连结VO,CO,由等腰三角形的性质可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度数.【详解】取AB中点O,连结VO,CO,∴三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度数为60∘【点睛】本题主要考查三棱锥的性质、二面角的求法,属于中档题.求二面角的大小既能考查线线垂直关系,又能考查线面垂直关系,同时可以考查学生的计算能力,是高考命题的热点,求二面角的方法通常有两个思路:一是利用空间向量,建立坐标系,这种方法优点是思路清晰、方法明确,但是计算量较大;二是传统方法,求出二面角平面角的大小,这种解法的关键是找到平面角.4、A【解析】
根据条件可求出,,从而可求出,这样即可求出,根据向量夹角的范围即可求出夹角.【详解】由题得;,,所以;;又;的夹角为.故选.【点睛】考查向量数量积的运算及计算公式,向量长度的求法,向量夹角的余弦公式,向量夹角的范围.5、C【解析】
求出圆的圆心坐标和半径,然后运用点到直线距离求出的值和半径进行比较,判定出直线与圆的关系.【详解】因为圆,所以圆心,半径,所以圆心到直线的距离为,则直线与圆相交.故选【点睛】本题考查了直线与圆的位置关系,运用点到直线的距离公式求出和半径比较,得到直线与圆的位置关系.6、B【解析】
先将函数化简,再根据三角函数的图像性质判断单调性和对称性,从而选择答案.【详解】
根据选项有,当时,在在上单调递增.又即为的对称轴.当时,为的对称轴.故选:B【点睛】本题考查的单调性和对称性质,属于中档题.7、A【解析】
由题意利用等比数列的通项公式,求出公比的值.【详解】解:等比数列中,,,,则公比,故选:.【点睛】本题主要考查等比数列的通项公式的应用,属于基础题.8、C【解析】
由题意可得,,且,由等差数列的性质和求和公式可得结论.【详解】∵等差数列的前项和有最大值,∴等差数列为递减数列,又,∴,,∴,又,,∴成立的正整数的最大值是17,故选C.【点睛】本题考查等差数列的性质,涉及等差数列的求和公式,属中档题.9、D【解析】
作出图形,可知,由四边形的最小面积是,可知此时取最小值,由勾股定理可知的最小值为,即圆心到直线的距离为,结合点到直线的距离公式可求出的值.【详解】如下图所示,由切线长定理可得,又,,且,,所以,四边形的面积为面积的两倍,圆的标准方程为,圆心为,半径为,四边形的最小面积是,所以,面积的最小值为,又,,由勾股定理,当直线与直线垂直时,取最小值,即,整理得,,解得.故选:D.【点睛】本题考查由四边形面积的最值求参数的值,涉及直线与圆的位置关系的应用,解题的关键就是确定动点的位置,考查分析问题和解决问题的能力,属于中等题.10、D【解析】
由扇形的弧长公式列方程得解.【详解】设扇形的半径是,由扇形的弧长公式得:,解得:故选D【点睛】本题主要考查了扇形的弧长公式,考查了方程思想,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
设等差数列的公差为,由可得出与的等量关系,然后求出的表达式,解不等式,即可得出使得取得最大值的正整数的值.【详解】设等差数列的公差为,由,可得,可得,,令,即,,解得.因此,当或时,取得最大值.故答案为:或.【点睛】本题考查等差数列前项和的最大值的求解,可利用二次函数的基本性质来求,也可以转化为等差数列所有的非负项之和的问题求解,考查化归与转化思想,属于中等题.12、4【解析】
,的等比中项是1,再用均值不等式得到答案.【详解】,的等比中项是1当时等号成立.故答案为4【点睛】本题考查了等比中项,均值不等式,意在考查学生的综合应用能力.13、【解析】分析:由二倍角公式求得,再由诱导公式得结论.详解:由已知,∴.故答案为.点睛:三角函数恒等变形中,公式很多,如诱导公式、同角关系,两角和与差的正弦(余弦、正切)公式、二倍角公式,先选用哪个公式后选用哪个公式在解题中尤其重要,但其中最重要的是“角”的变换,要分析出已知角与未知角之间的关系,通过这个关系都能选用恰当的公式.14、【解析】本题考查了三角恒等变换、已知三角函数值求角以及正弦定理,考查了同学们解决三角形问题的能力.由得,所以由正弦定理得,所以A=或(舍去)、15、,【解析】
根据三角函数的图象变换,求得函数的解析式,进而求得函数的对称中心,得到答案.【详解】由题意,把函数的图像上各点向右平移个单位,可得,再把图象上点的横坐标变为原来的一半,可得,把函数纵坐标扩大到原来的4倍,可得,令,解得,所以函数的对称中心为.故答案为:.【点睛】本题主要考查了三角函数的图象变换,以及三角函数的对称中心的求解,其中解答中熟练三角函数的图象变换,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】
令得,转化为z==,再利用圆心到直线距离求最值即可【详解】令,则故转化为z==,表示上半个圆上的点到直线的距离的最小值的5倍,即故答案为3【点睛】本题考查直线与圆的位置关系,点到直线的距离公式,考查数形结合思想,是中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)10【解析】
解:(I)依题意得,即.当n≥2时,;当所以.(II)由(I)得,故=.因此,使得<成立的m必须满足,故满足要求的最小正整数m为10.18、(1)证明见解析(2)到平面的距离为【解析】
试题分析:(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点.又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于.由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离19、(1)(2)减区间为,(3)【解析】
利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性,得出结论.利用正弦函数的单调性,求得函数的单调递减区间.利用同角三角函数的基本关系、两角和的正弦公式,求得的值.【详解】函数,故它的最小正周期为.对于函数,令,求得,可得它的减区间为,.中,若,.若,,为锐角,..【点睛】本题主要考查三角恒等变换,正弦函数的周期性和单调性,考查了同角三角函数的基本关系、两角和的正弦公式的应用,属于中档题.20、(1)证明见解析(2)【解析】试题分析:(1)做辅助线,先证及四边形为平行四边形平面;(2)利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024全新异地离婚手续下载与婚姻财产分割与法律咨询服务合同3篇
- 2024年职场过渡咨询服务合同
- 2024年股权投资分红协议书
- 消防工程食堂课程设计
- 城市更新土地与资产评估
- 2024年汽车买卖协议
- 相序表课程设计
- 2024年度抵押贷款合同范本修订版A(适用于交通运输行业)3篇
- 摇臂座课程设计工艺
- 研究生旅行课程设计方向
- 译林版英语八年级上册单词表
- 高三地理一模考试质量分析报告课件
- 聚合物锂电池规格表
- 中石油职称英语
- 2023年副主任医师(副高)-神经内科学(副高)考试历年真题荟萃带答案
- 建筑施工安全检查标准jgj592011图解
- 锅炉过热蒸汽温度控制系统课程设计
- 四川省成都市2021-2022学年高一(上)期末调研考试物理试题 Word版
- OFM软件的一些使用技巧
- 国开电大《工程数学(本)》形成性考核作业5答案
- 《公司金融》模拟试题答案 东北财经大学2023年春
评论
0/150
提交评论