版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省林州市林虑中学高一数学第二学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,,那么()A. B. C. D.2.己知函数(,,,)的图象(部分)如图所示,则的解析式是()A. B.C. D.3.某兴趣小组合作制作了一个手工制品,并将其绘制成如图所示的三视图,其中侧视图中的圆的半径为3,则制作该手工制品表面积为()A. B. C. D.4.若()A. B. C. D.5.棱长为2的正方体的内切球的体积为()A. B. C. D.6.黄金分割比是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值为,约为0.618,这一比值也可以表示为a=2cos72°,则=()A. B.1 C.2 D.7.如图,是圆的直径,,假设你往圆内随机撒一粒黄豆,则它落到阴影部分的概率为()A. B. C. D.8.如图,一个边长为的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入了粒芝麻,经过统计,落在月牙形图案内的芝麻有粒,则这个月牙图案的面积约为()A. B. C. D.9.已知向量,且,则的值为()A.1 B.3 C.1或3 D.410.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B.160 C. D.64二、填空题:本大题共6小题,每小题5分,共30分。11.在四面体中,平面ABC,,若四面体ABCD的外接球的表面积为,则四面体ABCD的体积为_______.12.定义运算,如果,并且不等式对任意实数x恒成立,则实数m的范围是______.13.若直线与直线互相平行,那么a的值等于_____.14.若实数满足,,则__________.15.将函数的图象上每一点的横坐标缩短为原来的一半,纵坐标不变;再向右平移个单位长度得到的图象,则_________.16.设为正偶数,,则____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.写出集合的所有子集.18.已知直线经过两条直线:和:的交点,直线:;(1)若,求的直线方程;(2)若,求的直线方程.19.已知数列中,,.(1)证明数列为等比数列,并求的通项公式;(2)数列满足,数列的前项和为,求证.20.已知函数.(1)求的最小正周期和单调递增区间;(2)若方程在有两个不同的实根,求的取值范围.21.设函数.(1)求;(2)求函数在区间上的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由于故,故,所以.由于,由于,所以,故.综上所述选.2、C【解析】
根据图象可知,利用正弦型函数可求得;根据最大值和最小值可确定,利用及可求得,从而得到函数解析式.【详解】由图象可知,的最小正周期:又又,且,,即,本题正确选项:【点睛】本题考查根据图象求解三角函数解析式的问题,关键是能够明确由最大值和最小值确定;由周期确定;通常通过最值点来进行求解,属于常考题型.3、D【解析】
由三视图可知,得到该几何体是由两个圆锥组成的组合体,根据几何体的表面积公式,即可求解.【详解】由三视图可知,该几何体是由两个圆锥组成的组合体,其中圆锥的底面半径为3,高为4,所以几何体的表面为.选D.【点睛】本题考查了几何体的三视图及表面积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.4、D【解析】故.【考点定位】本题主要考查基本不等式的应用及指数不等式的解法,属于简单题.5、C【解析】
根据正方体的内切球的直径与正方体的棱长相等可得结果.【详解】因为棱长为2的正方体的内切球的直径与正方体的棱长相等,所以直径,内切球的体积为,故选:C.【点睛】本题主要考查正方体的内切球的体积,利用正方体的内切球的直径与正方体的棱长相等求出半径是解题的关键.6、A【解析】
根据已知利用同角三角函数基本关系式,二倍角公式、诱导公式化简即可求值得解.【详解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°•2sin72°=2sin144°=2sin36°,∴.故选:A.【点睛】本题主要考查了同角三角函数基本关系式,二倍角公式、诱导公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.7、B【解析】
先根据条件计算出阴影部分的面积,然后计算出整个圆的面积,利用几何概型中的面积模型即可计算出对应的概率.【详解】设圆的半径为,因为,所以,又因为,所以落到阴影部分的概率为.故选:B.【点睛】本题考查几何概型中的面积模型的简单应用,难度较易.注意几何概型的常见概率公式:.8、A【解析】
根据几何概型直接进行计算即可.【详解】月牙形图案的面积约为:本题正确选项:【点睛】本题考查几何概型的应用,属于基础题.9、B【解析】
先求出,再利用向量垂直的坐标表示得到关于的方程,从而求出.【详解】因为,所以,因为,则,解得所以答案选B.【点睛】本题主要考查了平面向量的坐标运算,以及向量垂直的坐标表示,属于基础题.10、A【解析】
分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设,再根据外接球的直径与和底面外接圆的一条直径构成直角三角形求解进而求得体积即可.【详解】设,底面外接圆直径为.易得底面是边长为3的等边三角形.则由正弦定理得.又外接球的直径与和底面外接圆的一条直径构成直角三角形有.又外接球的表面积为,即.解得.故四面体体积为.故答案为:【点睛】本题主要考查了侧棱垂直于底面的四面体的外接球问题.需要根据题意建立底面三角形外接圆的直径和三棱锥的高与外接球直径的关系再求解.属于中档题.12、【解析】
先由题意得到,根据题意求出的最大值,即可得出结果.【详解】由题意得到,其中,因为,所以,又不等式对任意实数x恒成立,所以.故答案【点睛】本题主要考查由不等式恒成立求参数的问题,熟记三角函数的性质即可,属于常考题型.13、;【解析】由题意得,验证满足条件,所以14、【解析】
由反正弦函数的定义求解.【详解】∵,∴,,∴,∴.故答案为:.【点睛】本题考查反正弦函数,解题时注意反正弦函数的取值范围是,结合诱导公式求解.15、【解析】
由条件根据函数的图象变换规律,,可得的解析式,从而求得的值.【详解】将函数向左平移个单位长度可得的图象;保持纵坐标不变,横坐标伸长为原来的倍可得的图象,故,所以.【点睛】本题主要考查函数)的图象变换规律,属于中档题.16、【解析】
得出的表达式,然后可计算出的表达式.【详解】,,因此,.故答案为:.【点睛】本题考查数学归纳法的应用,考查项的变化,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】
根据集合的子集的定义列举出即可.【详解】集合的所有子集有:【点睛】本题考查了集合的子集的定义,掌握子集的定义是解题的关键,本题是一道基础题.18、(1);(2)【解析】
(1)先求出与的交点,再利用两直线平行斜率相等求直线l(2)利用两直线垂直斜率乘积等于-1求直线l【详解】(1)由,得,∴与的交点为.设与直线平行的直线为,则,∴.∴所求直线方程为.(2)设与直线垂直的直线为,则,解得.∴所求直线方程为.【点睛】两直线平行斜率相等,两直线垂直斜率乘积等于-1.19、(1)证明见解析;;(2)【解析】
(1)先证明数列是以3为公比,以为首项的等比数列,从而,由此能求出的通项公式;(2)由(1)推导出,从而,利用错位相减法求和,利用放缩法证明.【详解】由,,得,,数列是以3为公比,以为首项的等比数列,从而,数列满足,,,,两式相减得:,,,【点睛】本题主要考查等比数列的定义、通项公式与求和公式,以及错位相减法的应用,是中档题.一般地,如果数列是等差数列,是等比数列,求数列的前项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列的公比,然后作差求解,在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式.20、(1)最小正周期,;(2).【解析】
(1)利用两角差的余弦公式、倍角公式、辅助角公式得,求得周期;(2)利用换元法令,将问题转化成方程在有两个不同的实根,再利用图象得的取值范围.【详解】(1),所以的最小正周期,由得:,所以的单调递增区间是.(2)令,因为,所以,即方程在有两个不同的实根,由函数的图象可知,当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度路灯照明设施租赁合同书3篇
- 2024购销合同定义及内容
- 2024牧民草场承包合同范本及草原管理规范3篇
- 二零二五年度综合交通枢纽工程承包商履约合同3篇
- 银行从业风险管理内部题库习题及答案4
- 2024输电线路施工安全质量及进度保障协议3篇
- 二零二五年度第一章:高端酒店管理服务合同协议书3篇
- 2024环保职业健康管理合同3篇
- 2025年度餐厅员工工伤事故处理与赔偿合同3篇
- 2024民企与国企股权置换的产业升级合同3篇
- 物业消防管理火灾事故应急处置
- 无人机驾驶员培训计划及大纲
- 初三化学学情分析
- 2023-2024学年重庆市康德卷生物高一第一学期期末检测模拟试题含解析
- 4.与食品经营相适应的主要设备设施布局操作流程等文件
- 《施工组织设计编制指南》正文
- 【企业采购业务内部控制研究文献综述及理论基础2600字】
- (完整word)软件验收单
- 施工员质量员责任制月度考核记录三
- 医院重点岗位工作人员轮岗制度
- 第二章植物纤维
评论
0/150
提交评论