版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年湖南省长沙市开福区青竹湖湘一外国语学校中考数学二
模试卷
一、选择题(每题3分,共30分)
1.(3分)2023的相反数是()
A.-」B.一C.2023D.-2023
20232023
2.(3分)下列LOG。标志中,是中心对称图形,但不是轴对称图形的是()
©Wc®.遨
3.(3分)5月5日,从长沙市文化和旅游广电局了解到,”五一”假期全市接待游客362.38
万人次,实现旅游总收入35.38亿元:与清明小长假相比,游客人数和旅游收入分别增长
10%和20%以上.全市列入省文旅厅统计监测范围的景区共接待游客36.76万人次,实现
门票收入1126.58万元,长沙成为“五一“全国旅游最热门的城市之一.1126.58万元写
成科学记数法法的形式是()
A.11.2658X107B.1.12658X107
C.11.2658X106D.0.112658X107
4.(3分)下列运算正确的是()
A.2m-m—1B.rr^'n^—a6C.,H64-m2=m4D.(m3)2—m5
5.(3分)石鼓广场供游客休息的石板凳如图所示,它的俯视图是(
主视方向
6.(3分)已知一组数据:m,113,115,115,116,这组数据的平均数和众数分别是()
A.114,115B.114,114C.115,114D.115,115
7.(3分)一次函数y=-2x-1的图象不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
8.(3分)如果尤C»那么下列不等式正确的是()
A.x-l>y-1B.x+l>y+lC.-2x<-2yD.2x<2y
9.(3分)如图,△ABC中,AB=AC,AO是N84C的平分线,已知A8=10,AD=6,则
8C的长为()
A.10B.16C.18D.20
10.(3分)我们把顶角为36°的等腰三角形称为“黄金三角形”,它的底与腰的比值为
近二1.如图,在△ABC中,NA=36°,AB=AC,8。平分NA8C交AC于点。,若
2
BC=2,则CD的长为()
A
A.V5-1B.V5-3c.V5+2D.羟
2
二、填空题(每题3分,共18分)
11.(3分)分解因式:3/-6〃+3
12.(3分)若代数式,2在实数范围内有意义,则x的取值范围是
V2x-6
13.(3分)如图,在平面直角坐标系中,已知A(6,4),B(2,3),D(3,2),AABC
与△。环位似,原点。是位似中心,则E点的坐标是
/-2x+%=0有实数根,则实数k的取值范围
是
15.(3分)已知圆锥的母线长为6cm,底面半径为2cm,则它的侧面展开扇形的面积
为.
16.(3分)如图,。。是△ABC的外接圆,为直径,。是。。上一点,且C8=C。,CE
±DA交DA的延长线于点E.
(1)若NABC=40°,则/AZ)C=;
(2)若AE=2,BD=8,则。。的半径长为.
三、解答题(共72分,请将答案写在答题卡上)
17.计算:|-4|-(5-^3)°-2tan450+(-2)-2,
18.先化简再求值:-^—4-(14^一),其中。=&-3.
a2-9a-3
19.如图,在坡顶的A处的同一水平面上有一座垂直于水平面的建筑物8C,某同学再沿着
坡度为i=5:12的斜坡AP攀行26米到达了点A,距建筑物8C底端C为5米,在坡顶
A处又测得该建筑物的顶端8的仰角为76°,求建筑物8C的高度(精确到0.1).
(1)求坡顶A到地面尸。的距离;
(2)计算建筑物的高度.(参考数据:sin76°"0.97,cos76°七0.24,tan76°-4)
20.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活
动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据
调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有人,在扇形统计图中,“乒乓球”的
百分比为%,如果学校有800名学生,估计全校学生中有人喜欢篮
球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取
2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1
名男同学的概率.
21.如图,在菱形ABC。中,对角线AC、8。相交于点。点E是的中点,连接OE,
过点D作DF//AC交OE的延长线于点F,连接AF.
(1)求证:AAOE咨ADFE;
(2)判定四边形AODE的形状并说明理由.
22.某公司购买了A、8两种型号的芯片,其中A型芯片的单价比8型芯片的单价少9元,
已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.
(1)求该公司购买的A、8型芯片的单价各是多少元?
(2)若两种芯片共购买了100条,其购买的总费用不少于3140元,且8型的数量不高
于A型数量的4倍,问一共有多少种购买方案,哪一种方案最省钱?
23.如图,C、。是以为直径的上两点,连接AC,BD,满足NCA8=2NA8。,作
OELCA交CA延长线于点E,连接。E.
(1)求证:OE是。。的切线;
(2)若4B=3AE,
①求tanZABD的值;
②求蚂的值.
24.如图,已知矩形A8C。中,4B=5,AO=1,点E为线段CD上一点,连接8E,以BE
为边作正方形BEFG,如图所示.连接BAAF.
(1)如图(1),当点C在线段8尸上时,求AF的长;
(2)如图(2),当点E在线段上运动时,求的最小值及此时QE的长;
(3)当点E在线段C£(上运动时,设CE的长为m是否存在a的值使△A8F为等腰三
角形,若存在则求出。的值;若不存在请说明理由.
25.定义:在平面直角坐标系中,将函数xW/i部分的图象记为M,将图象砒沿x=/i翻折
到右侧后得到的图象为W2,我们称图象Wi,W2共同构成的图象称为函数的“〃阶共生
Yv1
函数”,如函数y=x的"1阶共生函数”解析式为=、.
7-x+2,x>l
(1)直接写出直线/:y=x-3的“4阶共生函数”与x轴的交点坐标;
_2
(2)已知直线y=Ax-左-3与yq的“o阶共生函数”共有三个交点,求此时人的取值
范围;
(3)若函数y=-/+2的“/I阶共生函数”与直线y=x恰有两个不同的交点,求〃的取
值范围.
2023年湖南省长沙市开福区青竹湖湘一外国语学校中考数学二
模试卷
参考答案与试题解析
一、选择题(每题3分,共30分)
1.(3分)2023的相反数是()
A.—」B.一LC.2023D.-2023
20232023
【答案】D
【分析】只有符号不同的两个数叫做互为相反数,由此即可得到答案.
【解答】解:2023的相反数是-2023.
故选:D.
2.(3分)下列LOG。标志中,是中心对称图形,但不是轴对称图形的是()
©W(D
【答案】B
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、是轴对称图形,是中心对称图形,故此选项错误;
8、不是轴对称图形,是中心对称图形,故此选项正确;
C、是轴对称图形,不是中心对称图形,故此选项错误;
。、不是轴对称图形,不是中心对称图形,故此选项错误;
故选:B.
3.(3分)5月5日,从长沙市文化和旅游广电局了解到,”五一“假期全市接待游客362.38
万人次,实现旅游总收入35.38亿元:与清明小长假相比,游客人数和旅游收入分别增长
10%和20%以上.全市列入省文旅厅统计监测范围的景区共接待游客36.76万人次,实现
门票收入1126.58万元,长沙成为“五一”全国旅游最热门的城市之一.1126.58万元写
成科学记数法法的形式是()
A.11,2658X107B.1.12658X107
C.11.2658X106D.0.112658X107
【答案】B
【分析】科学记数法的表示形式为aX10"的形式,其中1W间<10,n为整数.确定n
的值时,要看把原数变成a时,小数点移动了多少位,〃的绝对值与小数点移动的位数相
同.当原数绝对值210时,〃是正整数;当原数的绝对值<1时,w是负整数.
【解答】解:1126.58万=11265800=1.12658X1()7.
故选:B.
4.(3分)下列运算正确的是()
A.2m-m—1B.rr^'n^—a6C./+m2=m4D.(m3)2—m5
【答案】C
【分析】利用同底数塞的除法的法则,合并同类项的法则,同底数塞的乘法的法则,塞
的乘方的法则对各项进行运算即可.
【解答】解:A、2m-m=m,故A不符合题意;
故B不符合题意;
C>m64-m2=m4,故C符合题意;
26
D、(祖3)—m,故。不符合题意;
故选:C.
5.(3分)石鼓广场供游客休息的石板凳如图所示,它的俯视图是()
【答案】D
【分析】根据从上面看得到的图形是俯视图,可得答案.
【解答】解:从上面看,可得如图形:
故选:D.
6.(3分)已知一组数据:111,113,115,115,116,这组数据的平均数和众数分别是()
A.114,115B.114,114C.115,114D.115,115
【答案】A
【分析】根据众数定义确定众数;利用算术平均数的计算方法可以算得平均数.
【解答】解:平均数7=(111+113+115+115+116)4-5=114,
数据115出现了2次,次数最多,
,众数是115.
故选:A.
7.(3分)一次函数y=-2x-l的图象不经过()
A.第一象限B.第二象限C.第三象限D.第四象限
【答案】A
【分析】因为k=-2<0,b=-1<0,根据一次函数y=kx+b(人力0)的性质得到图象
经过第二、四象限,图象与y轴的交点在x轴下方,于是可判断一次函数y=-2x-1的
图象不经过第一象限.
【解答】解:对于一次函数y=-2x-1,
':k=-2<0,
.•.图象经过第二、四象限;
又,:b=-1<0,
一次函数的图象与y轴的交点在x轴下方,即函数图象还经过第三象限,
.•.一次函数y=-2x-1的图象不经过第一象限.
故选:A.
8.(3分)如果尤C»那么下列不等式正确的是()
A.x-1>y-1B.x+l>y+lC.-2x<-2yD.2x<2y
【答案】D
【分析】根据不等式的性质进行分析判断.
【解答】解:A、在不等式的两边同时减去1,不等号的方向不变,即
不符合题意;
B、在不等式的两边同时加上1,不等号的方向不变,即x+l<y+l,不符合题意;
C、在不等式的两边同时乘-2,不等号法方向改变,即-2x>-2»不符合题意;
D、在不等式的两边同时乘2,不等号的方向不变,即2x<2y,符合题意.
故选:D.
9.(3分)如图,△ABC中,AB=AC,是/BAC的平分线,已知A8=10,AD=6,则
8C的长为()
A.10B.16C.18D.20
【答案】B
【分析】先利用等腰三角形的三线合一性质可得8C=28。,ADLBC,然后在
中,利用勾股定理求出8。的长,进行计算即可解答.
【解答】解::AB=AC,是N8AC的平分线,
:.BC=2BD,ADLBC,
在RtZkAB。中,A8=10,AD=6,
,BD=VAB2-AD2=V102-62=8'
:.BC=2BD=16,
故选:B.
10.(3分)我们把顶角为36°的等腰三角形称为“黄金三角形”,它的底与腰的比值为
返二1.如图,在△ABC中,NA=36°,AB=AC,80平分NABC交AC于点O,若
2
BC=2,则CD的长为()
A
BAC
A.V5-1B.V5-3C.疾+2D.娓+2
2
【答案】A
【分析】根据等腰三角形的性质以及三角形内角和定理可得/A8C=/C=72°,再利用
角平分线的定义可得NZ)8C=36°,从而利用三角形内角和定理可得/BDC=72°,进
而可得/C=/BOC=72°,然后利用等角对等边可得8C=BD,从而可得是“黄
金三角形”,最后进行计算即可解答.
【解答】解::/A=36°,AB=AC,
J.ZABC^ZC^l.(180°-ZA)=72。,
2
平分/ABC,
AZDBC=AZABC=36°,
2
:.ZBDC=18Q0-ZDBC-ZC=72°,
:.ZC=ZBDC=12°,
:.BC=BD,
:.ABDC是“黄金三角形”,
•DC-V5-1
••-----------,
BC2
,:BC=2,
:.DC=4S-1,
故选:A.
二、填空题(每题3分,共18分)
11.(3分)分解因式:3a2-64+3=3Q-1)2.
【答案】见试题解答内容
【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.
【解答】解:原式=3(〃2-2〃+1)=3(4-1)2
故答案为:3(〃-1)2.
12.(3分)若代数式,2在实数范围内有意义,则无的取值范围是x>3.
V2x-6
【答案】见试题解答内容
【分析】根据二次根式有意义的条件和分母不为零的性质,可得2x-6>0,再解即可.
【解答】解:由题意得:2x-6>0,
解得:x>3,
故答案为:x>3.
13.(3分)如图,在平面直角坐标系中,已知A(6,4),B(2,3),D(3,2),AABC
与△。环位似,原点。是位似中心,则E点的坐标是(1,1.5).
【分析】利用关于以原点为位似中心的对称点的坐标特征,通过点A与点D的坐标得到
位似比,然后根据位似比得到E点坐标.
【解答】解::△ABC与△£)所位似,原点。是位似中心,
而A(6,4),B(2,3),D(3,2),
2222
t/OA=^5+4=2^/13>OD=I/3+2=V131
.♦.△ABC与△•DEE的位似比为2:1,
\'B(2,3),
点的坐标是为(2XA,3XA),即(1,1.5).
22
故答案为:(1,1.5).
14.(3分)若关于x的一元二次方程?-2x+4=0有实数根,则实数k的取值范围是k
【答案】0.
【分析】先计算根的判别式,根据一元二次方程解的情况得不等式,求解即可.
【解答】解:,.•A=(-2)2-4XlXZ
=4-4k.
又・・,关于x的一元二次方程7-2x+k=0有实数根,
,-.4-4^0.
故答案为:ZW1.
15.(3分)已知圆锥的母线长为6cm,底面半径为2cm,则它的侧面展开扇形的面积为127r
cm2
【答案】12ncm2.
【分析】圆锥的侧面积S=TIT7.
【解答】解:底面半径为2c如圆锥的母线长为60机,
则圆锥侧面展开图的面积为S=nrZ=irX2X6=12n(cm2).
故答案为:12nc加2.
16.(3分)如图,是△A3C的外接圆,A8为直径,。是。0上一点,且C3=CD,CE
-LDA交DA的延长线于点E.
(1)若NA8C=40。,则NADC=40°;
(2)若AE=2,BD=8,则。。的半径长为10
【答案】(1)40°;
(2)10.
【分析】(1)由圆周角定理可得出答案;
(2)过点C作C旦L8O于点儿证出/AD3=/AC8=90°,证明四边形CED尸是矩形,
得出CE=。尸=4,求出AC=2jg,证出处理,求出8C的长,由勾股定理可得出答
ACBC
案.
【解答】解:(1)VAC=AC.
ZAZ)C=ZABC=40°,
故答案为:40°;
(2)过点C作CFLBD于点F,
':BD=S,CD=CB,
:.DF=BF=4,
"?CELAE,
:.ZCEA=90°,
*:AB为直径,
AZADB=ZACB=90°,
J四边形CEDb是矩形,
:.CE=DF=4,
9:AE=2,
22
;•AC=VAECE=^22+42=2^5,
•.•四边形AZ)8C为圆。的内接四边形,
:.ZEAC=ZCBF,
cosZEAC=cosZCBF,
•・•—AE二BF”,
ACBC
•・•--2--=--4-,
25/5BC
:.BC=4遍,
:-BA=VAC2+BC2=1°-
故答案为:10.
三、解答题(共72分,请将答案写在答题卡上)
17.计算:|-4|-(5-V^)°-2tan45°+(-2)-2-
【答案】旦
4
【分析】根据实数的相关运算法则进行计算即可.
【解答】解:|-4|-(5-73)°-2tan45°+(-2)"
=4-1-2X1+A
4
=3-2+A
4
了
18.先化简再求值:(1+-^-)-其中。=&-3.
a2-9a-3
【答案】,,返.
a+32
【分析】先根据分式混合运算的法则把原式进行化简,再把。的值代入进行计算即可.
【解答】解:原式=-一A一-^3+3,
(a+3)(a-3)a-3
=a,a-3
(a+3)(a-3)a
=1
a+3
将。=&-3代入得,原式—=亚.
V2-3+32
19.如图,在坡顶的A处的同一水平面上有一座垂直于水平面的建筑物BC,某同学再沿着
坡度为7=5:12的斜坡AP攀行26米到达了点A,距建筑物8C底端C为5米,在坡顶
A处又测得该建筑物的顶端8的仰角为76°,求建筑物BC的高度(精确到0.1).
(1)求坡顶A到地面PQ的距离;
(2)计算建筑物的高度.(参考数据:sin76°-0.97,cos76°七0.24,tan76°-4)
【答案】(1)10米;
(2)20.0米.
【分析】(1)过点A作A//LP。于反,根据斜坡AP的坡度为i=5:12,得出地上,
PH12
设AH=5瓦则PH=12左,AP=Uk,求出左值即可求解.
(2)由题意易得AC=5,然后利用Rt^ABC中,tan76°=区即可求解.
【解答】解:(1)过点A作于H,如图所示,
•.•斜坡A尸的坡度为i=5:12,
•AH5
PH12
设AH=5左,则PH=12Z,
贝IAP=VAH2+PH2=7(5K)2+(12K)2=13k'
二13左=26,解得左=2,
:.AH=10,
坡顶A到地面PQ的距离为10米.
(2)由题意得:AC=5,
.•.在RtZXABC中,tan76。=--
5
解得x心20.0,
古塔BC的高度约20.0米.
20.某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活
动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据
调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有5人,在扇形统计图中,“乒乓球”的百
分比为20%,如果学校有800名学生,估计全校学生中有果人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取
2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1
名男同学的概率.
【答案】见试题解答内容
【分析】(1)先利用跳绳的人数和它所占的百分比计算出调查的总人数,再用总人数分
别减去喜欢其它项目的人数可得到喜欢篮球项目的人数,再计算出喜欢乒乓球项目的百
分比,然后用800乘以样本中喜欢篮球项目的百分比可估计全校学生中喜欢篮球项目的
人数;
(2)画树状图展示所有20种等可能的结果数,再找出所抽取的2名同学恰好是1名女
同学和1名男同学的结果数,然后根据概率公式求解
【解答】解:(1)调查的总人数为20・40%=50(人),
所以喜欢篮球项目的同学的人数=50-20-10-15=5(人);
“乒乓球”的百分比=也.义100%=20%,
50
因为800X巨X100%=80,
50
所以估计全校学生中有80人喜欢篮球项目;
故答案为5,20,80;
(2)如图,
男男男女女
男男女女男男女女男Z男V女.女男男ZV男x女.男男男女
共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结
果数为12,
所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=」2=3.
205
21.如图,在菱形ABCD中,对角线AC、8。相交于点。,点E是的中点,连接OE,
过点D作DF//AC交OE的延长线于点F,连接AF.
(1)求证:AAOE咨4DFE;
(2)判定四边形AODF的形状并说明理由.
BC
【答案】(1)见解答.
(2)四边形AOCF为矩形.
【分析】(1)利用全等三角形的判定定理即可.
(2)先证明四边形AO。歹为平行四边形,再结合/A00=90°,即可得出结论.
【解答】(1)证明:是的中点,
:.AE=DE,
':DF//AC,
:.ZOAD=ZADF,
':ZAEO=ZDEF,
:.△AOEgLDFE(ASA).
(2)解:四边形AODF为矩形.
理由:V^AOE^ADFE,
:.AO=DF,
':DF//AC,
...四边形AODF为平行四边形,
•••四边形ABC。为菱形,
:.AC±BD,
即/AOD=90°,
平行四边形AOOE为矩形.
22.某公司购买了A、8两种型号的芯片,其中A型芯片的单价比8型芯片的单价少9元,
已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.
(1)求该公司购买的A、8型芯片的单价各是多少元?
(2)若两种芯片共购买了100条,其购买的总费用不少于3140元,且8型的数量不高
于A型数量的4倍,问一共有多少种购买方案,哪一种方案最省钱?
【答案】(1)该公司购买的4型芯片的单价是26元,8型芯片的单价是35元;
(2)一共有21种购买方案,购买A型芯片40条,B型芯片60条最省钱.
【分析】(1)设8型芯片的单价为x元/条,则A型芯片的单价为(x-9)元/条,根据数
量=总价+单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相
等,列出分式方程,解方程即可;
(2)设购买A型芯片为加条,则购买B型芯片为(1OO-/77)条,根据购买的总费用不
少于3140元,且8型的数量不高于A型数量的4倍,列出一元一次不等式组,解得20
得一共有21种购买方案,再设总费用为y元,由题意得y=-9〃计3500,然后
由一次函数的性质即可得出结论.
【解答】解:(1)设该公司购买的8型芯片的单价是x元,则A型芯片的单价是(x-9)
元,
由题意得:3120-4200;
x-9x
解得:x=35,
经检验,x=35是原方程的解,且符合题意,
:.x-9=26,
答:该公司购买的A型芯片的单价是26元,5型芯片的单价是35元;
(2)设购买A型芯片为机条,则购买5型芯片为(100-m)条,
由题意得:126m+35(100-m)》3140,
1100-irtC4m
解得:20W«iW40,
•••机为整数,
:.m=20,21,22,23,24,…,40,
一共有21种购买方案,
设总费用为y元,
由题意得:j=26/7?+35(100-m)=-9m+3500,
:-9<0,
随机的增大而减小,
.•.当机=40时,y的值最小,
此时100-m=60,
答:一共有21种购买方案,购买A型芯片40条,8型芯片60条最省钱.
23.如图,C、。是以AB为直径的上两点,连接AC,BD,满足作
OE_LCA交CA延长线于点E,连接DE.
(1)求证:OE是。。的切线;
(2)AB=3AE,
①求tanZABD的值;
【答案】(1)见解析;
(2)①叵
_2
②逅.
6
【分析】(1)连接OD,根据圆周角定理得到/C4B=NA。。,根据平行线的判定得到
AC//OD,求得OO_LZ)E,根据切线的判定定理即可得至U结论;(2)①设AE=x,AB=
3x,连接A。,根据圆周角定理得到/AO8=90°,推出根据相似三角
形到现在得到AO=«x,根据勾股定理得到8。我以后=遍方根据三角函数的
定义得到tan/凡RD=包■=」!X=Y^_;
BDV6x2
②根据勾股定理得到^=VAD2-AE2=V2^根据相似三角形的判定和性质定理即可
得到结论.
【解答】(1)证明:连接O。,
':ZCAB=2ZABD,ZAOD=2ZABD,
:.ZCAB=ZAOD,
:.AC//OD,
":DE±CA,
J.ODLDE,
•..OO是。。的半径,
是。。的切线;
(2)解:®":AB=3AE,
・••设AE=x,AB=3x,
连接AD,
〈AB是。。的直径,
AZADB=90°,
AZADO^ZODB=90°,
VZADE+ZADO=90°,
JZADE=ZODB,
・:OD=OB,
:・NODB=NOBD,
:.ZADE=NABD,
VZE=/ADB,
・•・XADEs"ABD,
・ADAB
••———,
AEAD
•AD3x
••---二-------,
xAD
.".AD=yf3x,
A5£)=VAB2-AD2=^X,
,tanNAB£)=包_=返_;
BDV6x2
②:/E=90°,
*1-DE=VAD2-AE2=Mx,
•:/ECD=NABD,NE=NADB=90°,
AECDsADBA,
.CEDE
"BD=AD,
•CE二&x,
V6xx
***CE=2.Xf
.\AC=CE-AE=2x-x=x,
•AC=x_V6
DB5/6x6
c
24.如图,已知矩形ABC。中,AB=5,AO=1,点E为线段CD上一点,连接8E,以BE
为边作正方形BEFG,如图所示.连接BE、AF.
(1)如图(1),当点C在线段8尸上时,求AF的长;
(2)如图(2),当点E在线段C。上运动时,求AE的最小值及此时。E的长;
(3)当点E在线段C。上运动时,设CE的长为a,是否存在。的值使AAB尸为等腰三
角形,若存在则求出。的值;若不存在请说明理由.
【答案】⑴AF的长为函;
(2)AF的最小值为_Z2/Z,此时。E的长为5;
22_
(3)存在“的值使△AB尸为等腰三角形,a的值为2或3或1或送
22
【分析】(1)由矩形的性质得8C=AD=1,DC=AB=5,ZABC=ZBCD=9Q°,由正
方形的性质得BE=FE,当点C在线段BE上,则CE_LBR所以尸C=8C=1,BF=2BC
=2,由勾股定理得AF=JAB2+BF2=
(2)作△BEF的外接圆OO,延长。C交。。于点H,连接8”、FH,则N£7/=/E8F
=45°,NBHE=NBFE=45°,所以N8CH=90°,则/CBa=/CH5=45°,所以
HC=BC=1,因为点尸在直线板上运动,所以当AE_LHF时,AF的值最小,设AF交
。。于点/,作包_LOC于点L,可求得">=AD=1,HI=5,则LF=U=LH=a,所以
2
22=
A[=«h廿+IQ2=如,FZ=VLF+LI>AF=AHFI=£U~,再证明△BEC
会AEFL,得CE=LF=>,所以DE=DC-CE=9;
22
(3)作印_LAB于点N,交。C于点M,可证明△MEFgZkCBE,得MF=CE=a,EM
=BC=1,所以MV=8C=1,则FN=a+l,BN=a-1,再分三种情况讨论,一是当AF
=AB=5时,贝l|(6-q)2+(a+1)2=52;二是当时,则。-1=回;三是当AB
2
=m=5时,则(0+1)2+(a-1)2=52,解方程求出符合题意的。值即可.
【解答】解:(1):四边形ABC。是矩形,AB=5,AD=1,
:.BC=AD=\,DC=AB=5,ZABC=ZBCD=90°,
•/四边形BEFG是正方形,
:.BE=FE,
;点E为线段CO上一点,点C在线段BF上,
ZBC£=90°,
:.CE±BF,
:.FC=BC=1,
:.BF=2BC=2,
AF=VAB2+BF2=V52+22="^29,
•1.AF的长为亚.
(2)如图(2),作△BEF的外接圆。O,延长。C交。。于点H,连接8”、FH,
;BE=FE,ZBEF=90°,
:.NEBF=/EFB=45°,
:.ZEHF=ZEBF=45°,ZBHE=ZBFE=45°,
VZBC7/=90°,
:.ZCBH=ZCHB=45°,
:,HC=BC=\,
・・,点/在与直线。。所夹的锐角为45。的直线上运动,
・••当/时,A厂的值最小,
设Ab交OC于点/,作电,。。于点L
VZAFH=90°,NIHF=45°,
:.ZHIF=ZIHF=45°,
:.ZDIA=ZDAI=45°,
:.FI=FH,/D=AD=L
:.HI=CD-0+HC=5+l-1=5,
・•・LF=LI=LH=工HI=2X5=9,
222
*:ZD=ZFLI=90°,
-'-AI=VAD2+ID2=712+12=a,FI=VLF2+LI2=鸿产+(1")2=
:.AF=AI+FI=4^+3
22
':ZBDE=ZELF=90°,ZBEC=ZEFL=900-ZLEF,BE=EF,
:.△BE8AEFL(A4S),
;.CE=LF=*,
2
:.DE=DC-CE=5-竺=9,
22
:.AF的最小值为Ml,此时DE的长为金.
22
(3)存在。的值使AAB尸为等腰三角形,
作ENLAB于点N,交。C于点M,
':DC//AB,
:./EMF=NANM=90°,
:.ZEMF=ZC,
YNMEF=NCBE=9Q°-/BEC,EF=BE,
.♦.△MEF咨4CBE(AAS),
:.MF=CE=a,EM=BC=l,
':ZBNM=ZNBC=ZC=900,
四边形BCMN是矩形,
:.MN=BC=l,
:.FN=MF+MN=a+1,BN=CM=CE-l=a-1,
当AAB歹为等腰三角形,且时,如图(3),
:4解+印2=4尸,AN=AB-BN=5-(a-1)=6-a,
(6-a)2+(a+1)2—52,
解得。1=2,“2=3;
当AAB歹为等腰三角形,且时,如图(4),
;AF=BF,FALLAB于点N,
BH=AN=AAB=工X5=2
222
".a-1=—,
2
解得a=工;
2
当△ABb为等腰三角形,且时,如图(5),
,:F^+Ba=F铲,
/.(。+1)2+(。-1)2=52,
解得m=逗,及==画(不符合题意,舍去),
22
综上所述,。的值为2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版生物质发电监理服务合同三方协议3篇
- 二零二五版企业安全风险评估与安保服务合同3篇
- 二零二五年度高品质钢结构装配式建筑安装服务合同3篇
- 二零二五版电影投资融资代理合同样本3篇
- 二零二五版初级农产品电商平台入驻合同2篇
- 二零二五年度电商平台安全实验报告安全防护方案合同3篇
- 二零二五年度白酒销售区域保护与竞业禁止合同3篇
- 二零二五版建筑工程专用防水材料招投标合同范本3篇
- 二零二五年研发合作与成果共享合同2篇
- 二零二五版钢结构工程节能合同范本下载3篇
- 2024年四川省德阳市中考道德与法治试卷(含答案逐题解析)
- 施工现场水电费协议
- SH/T 3046-2024 石油化工立式圆筒形钢制焊接储罐设计规范(正式版)
- 六年级数学质量分析及改进措施
- 一年级下册数学口算题卡打印
- 真人cs基于信号发射的激光武器设计
- 【阅读提升】部编版语文五年级下册第三单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 四年级上册递等式计算练习200题及答案
- 法院后勤部门述职报告
- 2024年国信证券招聘笔试参考题库附带答案详解
- 道医馆可行性报告
评论
0/150
提交评论