数量关系专项训练题库必考题_第1页
数量关系专项训练题库必考题_第2页
数量关系专项训练题库必考题_第3页
数量关系专项训练题库必考题_第4页
数量关系专项训练题库必考题_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数量关系专项训练题库第一部分单选题(200题)1、某商店以5元/斤的价格购入一批蔬菜,上午以8元/斤的价格卖出总进货量的60%,中午以上午售出价的8折卖出总进货量的20%,下午以中午售出价的一半卖出剩余货量的一半,最后获利210元。则该商店一共购入多少斤蔬菜?()

A、140

B、150

C、160

D、180

【答案】:答案:B

解析:赋值购进的量为10斤,上午以8元/斤的价格卖出6斤,中午以6.4元/斤的价格卖出2斤,下午以3.2元/斤的价格卖出1斤,总收入=8×6+6.4×2+3.2×1=64元,总利润=64-5×10=14元,实际购入(210/14)×10=150斤。故选B。2、三个学校的志愿队分别去敬老院照顾老人,A学校志愿队每隔7天去一次,B学校志愿队每隔9天去一次,C学校志愿队每隔14天去一次,三个队伍周三第一次同时去敬老院,问下次同时去敬老院是周几?()

A、周三

B、周四

C、周五

D、周六

【答案】:答案:B

解析:根据每隔7天去一次,可知A每8天去一次敬老院,同理,B、C每10天、15天去一次敬老院。下次同时去敬老院应该为120(8、10、15的最小公倍数)天后。每周7天,120÷7=17…1,故三人下次同时去敬老院应该是周三后推一天,即周四。故选B。3、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。4、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。

A、800吨

B、1080吨

C、1360吨

D、1640吨

【答案】:答案:D

解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低下降为每公斤1.86元,即下降了2.68-1.86=0.82(元)。因为每投放100吨,价格下降0.05元,所以投放玉米的数量不能超过0.82÷0.05×100=1640(吨)。故选D。5、2,3,13,175,()

A、30625

B、30651

C、30759

D、30952

【答案】:答案:B

解析:第一项乘以2,然后加第二项的平方等于第三项。2×2+3×3=13。第二项乘以2,然后加第三项的平方等于第四项。3×2+13×13=175。第三项乘以2,然后加第四项的平方等于第五项。13×2+175×175=30651。故选B。6、某快速反应部队运送救灾物资到灾区。飞机原计划每分钟飞行12千米,由于灾情危急,飞行速度提高到每分钟15千米,结果比原计划提前30分钟到达灾区,则机场到灾区的距离是多少千米?()

A、1600

B、1800

C、2050

D、2250

【答案】:答案:B

解析:设机场到灾区的距离为x,由每分钟飞行12千米可知,原飞行时间为;由每分钟15千米可知,现飞行时间为。根据比原计划提前30分钟,可得,解得x=1800(千米)。故选B。7、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:题干倍数关系明显,考虑作商。后项除以前项得到新数列:-3、-1、1、3,新数列为公差是2的等差数列,则新数列的下一项应为5,所求项为:-9×5=-45。故选D。8、-1,1,7,25,79,()

A、121

B、241

C、243

D、254

【答案】:答案:B

解析:相邻两项之差依次是2,6,18,54,(162),这是一个公比为3的等比数列,79+162=(241)。故选B。9、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。10、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。11、某收藏家有三个古董钟,时针都掉了,只剩下分针,而且都走得较快,每小时分别快2分钟、6分钟及12分钟。如果在中午将这三个钟的分针都调整指向钟面的12点位置,多少小时后这3个钟的分针会指在相同的分钟位置?

A.24

B.26

C.28

D.30

【答案】:答案:D

解析:由题意可得:假设每小时快2分钟、快6分钟、快12分钟的古董钟分别为A钟、B钟、C钟,则B钟与A钟速度差为分钟/小时,已知整个钟盘有60分钟,即经过小时,B钟的分针比A钟的分针恰好多走一圈,且此时两钟分针重合,同理,C钟与A钟速度差为分钟/小时,即经过小时,C钟的分针比A钟的分针恰好多走一圈,此时两钟分针重合,取6和15的最小公倍数30,即经过30小时,B钟的分针比A钟的分针恰好多走2圈,C钟的分针比A钟的分针恰好多走5圈,且此时三个分针处于同一个位置。故正确答案为D。12、某城市居民用水价格为:每户每月不超过5吨的部分按4元/吨收取;超过5吨不超过10吨的部分按6元/吨收取;超过10吨的部分按8元/吨收取。某户居民两个月共交水费108元,则该户居民这两个月用水总量最多为多少吨?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:总费用一定,要使两个月的用水总量最多,需尽量使用低价水。先将两个月4元/吨的额度用完,花费4×5×2=40(元);再将6元/吨的额度用完,花费6×5×2=60(元)。由两个月共交水费108元可知,还剩108-40-60=8(元),可购买1吨单价为8元/吨的水。该户居民这两个月用水总量最多为5×2+5×2+1=21(吨)。故选B。13、玉米的正常市场价格为每公斤1.86元到2.18元,近期某地玉米价格涨至每公斤2.68元。经测算,向市场每投放储备玉米100吨,每公斤玉米价格下降0.05元。为稳定玉米价格,向该地投放储备玉米的数量不能超过()。

A、800吨

B、1080吨

C、1360吨

D、1640吨

【答案】:答案:D

解析:要稳定玉米价格,玉米的价格必须调整至正常区间。所以最低下降为每公斤1.86元,即下降了2.68-1.86=0.82(元)。因为每投放100吨,价格下降0.05元,所以投放玉米的数量不能超过0.82÷0.05×100=1640(吨)。故选D。14、2,5,9,19,37,75,()

A、140

B、142

C、146

D、149

【答案】:答案:C

解析:方法一:2×2+1=5,5×2-1=9,9×2+1=19,19×2-1=37,37×2+1=75,奇数项,每项乘以2加上1等于后一项;偶数项,每项乘以2减去1等于后一项,即所填数字为75×2-1=149。方法二:2×2+5=9,5×2+9=19,9×2+19=37,19×2+37=75,第三项=第一项×2+第二项,即所填数字为37×2+75=149。故选C。15、1,6,5,7,2,8,6,9,()

A、1

B、2

C、3

D、4

【答案】:答案:C

解析:本题为隔项递推数列,存在关系:第三项=第二项-第一项,第五项=第四项-第三项,……因此未知项为9-6=3。故选C。16、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。17、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。18、四人年龄为相邻的自然数列且最年长者不超过30岁,四人年龄之乘积能被2700整除且不能被81整除。则四人中最年长者多少岁?()

A、30

B、29

C、28

D、27

【答案】:答案:C

解析:结合最年长者,优先从选项最大值代入:A选项:30×29×28×27,尾数只有一个0,不能被2700整除,排除;B选项:29×28×27×26,尾数不为0,不能被2700整除,排除;C选项:28×27×26×25=(4×7)×27×26×25,能被2700整除,不能被81整除,正确。故选C。19、1,1,3,7,17,41,()

A、89

B、99

C、109

D、119

【答案】:答案:B

解析:第三项=第二项×2+第一项,99=41×2+17。故选B。20、3,11,13,29,31,()

A、52

B、53

C、54

D、55

【答案】:答案:D

解析:奇偶项分别相差11-3=8,29-13=16=8×2,问号-31=24=8×3则可得?=55。故选D。21、2,6,18,54,()

A、186

B、162

C、194

D、196

【答案】:答案:B

解析:该数列是以3为公比的等比数列,故空缺项为:54×3=162。故选B。22、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。23、一旅行团共有50位游客到某地旅游,去A景点的游客有35位,去B景点的游客有32位,去C景点的游客有27位,去A、B景点的游客有20位,去B、C景点的游客有15位,三个景点都去的游客有8位,有2位游客去完一个景点后先行离团,还有1位游客三个景点都没去。那么,50位游客中有多少位恰好去了两个景点?()

A、29

B、31

C、35

D、37

【答案】:答案:A

解析:设去两个景点的人数为y,根据三集合非标准型公式可得:35+32+27-y-2×8=50-1,解得y=29。故选A。24、-3,-2,5,24,61,()

A、122

B、156

C、240

D、348

【答案】:答案:A

解析:相邻两项逐差:因此,未知项=61+61=122。故选A。25、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。

A、10万元/个

B、11万元/个

C、12万元/个

D、13万元/个

【答案】:答案:C

解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。26、2,14,84,420,1680,()

A、2400

B、3360

C、4210

D、5040

【答案】:答案:D

解析:两两做商得到7,6,5,4,按此规律下一项为3,所以所求项为1680×3=5040。故选D。27、张老师家四代同堂,且从父亲、张老师、儿子到孙子,每两代人的年龄差相同。5年前张老师父亲的年龄是儿子的3倍,8年后张老师的年龄是孙子的5倍。问今年四个人的年龄之和为()。

A、168岁

B、172岁

C、176岁

D、180岁

【答案】:答案:C

解析:父亲、张老师、儿子、孙子每两代人年龄差相同,设此年龄差为d,则父亲为(儿+2d),张老师为 (儿+d),孙子为(儿-d),因此四人年龄总和为(4儿+2d)。由5年前张老师父亲年龄是儿子的3倍即比儿子大2倍,即2d=2(儿-5)①;由8年后张老师年龄是孙子的5倍即比孙子大4倍即2d=4(儿-d+8)②;由①②可得儿=31,d=26,因此四人年龄总和为4儿+2d=4×31+2×26=176(岁)。故选C。28、4,5,9,18,34,()

A、59

B、37

C、46

D、48

【答案】:答案:A

解析:该数列的后项减去前项得到一个平方数列,故空缺处应为34+25=59。故选A。29、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,奇数项是2,偶数项构成公差为1的等差数列,即所填数字为6+(-1)=5。故选B。30、0,3,18,33,68,95,()

A、145

B、148

C、150

D、153

【答案】:答案:C

解析:原数列写为0=0×1,3=1×3,18=2×9,33=3×11,68=4×17,95=5×19,其中1,3,9,11,17,19构成的数列奇数项是等差数列,偶数项也是等差数列。故空缺处数字为6×25=150。故选C。31、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。32、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是50%?()

A、1

B、1.3

C、1.6

D、1.9

【答案】:答案:C

解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶甲、两瓶乙、两瓶丙混合,前两种浓度都是50%,所以只需要加入适量水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%的酒精溶液溶度变为50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和乙丙溶液各一瓶混合后浓度必然为50%。若甲、乙和丙各一瓶混合时浓度仍然为50%,则需加水为(公斤)。故选C。33、6,6,12,36,()

A、124

B、140

C、144

D、164

【答案】:答案:C

解析:两两相除。6/6=1,6/12=1/2,12/36=1/3,下个数为36/()=1/4。故选C。34、1,6,36,216,()

A、1296

B、1297

C、1299

D、1230

【答案】:答案:A

解析:公比为6的等比数列。故选A。35、某种细胞开始时有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个……按此规律,6小时后细胞存活的个数有多少?()

A、63

B、65

C、67

D、71

【答案】:答案:B

解析:1小时后细胞存活的个数为2×2-1=3;2小时后为2×3-1=5;3小时后为2×5-1=9……按此规律,n小时后细胞存活的个数为。故6小时后细胞存活的个数是(个)。故选B。36、226,264,316,388,()

A、236

B、386

C、486

D、566

【答案】:答案:C

解析:226=225+1=152+13,264=256+8=162+23,316=289+27=172+33,388=324+64=182+43,由此可以推知下一项应为192+53=486。故选C。37、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。38、过长方体一侧面的两条对角线交点,与下底面四个顶点连得一四棱锥,则四棱锥与长方体的体积比为多少?()

A、1:8

B、1:6

C、1:4

D、1:3

【答案】:答案:B

解析:等底等高时,椎体体积是柱体体积的,而题中椎体的高是长方体高的一半,四棱锥与长方体的体积之比为1:6。故选B。39、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。40、甲乙两车早上分别同时从A、B两地出发驶向对方所在城市,在分别到达对方城市并各自花费1小时卸货后,立刻出发以原速返回出发地。甲车的速度为60千米/小时,乙车的速度为40千米/小时,两地之间相距480千米。问两车第二次相遇距离两车早上出发经过了多少个小时?()

A、13.4

B、14.4

C、15.4

D、16.4

【答案】:答案:C

解析:根据“分别同时从A.B两地出发”、“两车第二次相遇”,可知考查的是两端出发的多次相遇问题,公式为(v1+v2)t=(2n-1)S。代入数据得(60+40)t=(2×2-1)×480,解得t=14.4,由“各自花费一小时卸货”,故经过了14.4+1=15.4小时。故选C。41、97,95,92,87,()

A、81

B、79

C、74

D、66

【答案】:答案:B

解析:97+(-2)=95,95+(-3)=92,92+(-5)=87,数列中两项之差形成的数列为-2,-3,-5,而(-2)+(-3)=(-5),后一项为前两项之和,下一个数为(-3)+(-5)=(-8),即所填数字为87+(-8)=79。故选B。42、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数得2,-3,2,-2,2,为奇数项是2偶数项为公差为1的等差数列,即所填数字为6+(-1)=5。故选B。43、30,42,56,72,()

A、86

B、60

C、90

D、94

【答案】:答案:C

解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。44、2,6,30,210,2310,()

A、30160

B、30030

C、40300

D、32160

【答案】:答案:B

解析:依次将相邻两个数中后一个数除以前一个数得3,5,7,11,为一个质数数列,即所填数字为2310×13=30030。故选B。45、1,2,9,64,()

A、250

B、425

C、625

D、650

【答案】:答案:C

解析:10,21,32,43,(54)=625。故选C。46、7,7,16,42,107,()

A、274

B、173

C、327

D、231

【答案】:答案:D

解析:做一次差后得到数列:13-1,23+1,33-1,43+1,53-1。故选D。47、3,7,17,115,()

A、132

B、277

C、1951

D、1955

【答案】:答案:C

解析:3×7-4=17,7×17-4=115,即所填数字为17×115-4=1951。故选C。48、10,9,17,50,()

A、100

B、99

C、199

D、200

【答案】:答案:C

解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故选C。49、2,4,10,18,28,(),56

A、32

B、42

C、52

D、54

【答案】:答案:B

解析:因式分解数列。2=1×2,4=1×4,10=2×5,18=3×6,28=4×7,()=?×?,56=7×8,每一项的两个因子之和分别为3、5、7、9、11、()、15,构成公差为2的等差数列。由此可知,空缺项的两个因子的和为13,结合选项,只有B项的42=6×7分解后两个因子的和为13。故选B。50、从A地到B地为上坡路。自行车选手从A地出发按A-B-A-B的路线行进,全程平均速度为从B地出发,按B-A-B-A的路线行进的全程平均速度的4/5,如自行车选手在上坡路与下坡路上分别以固定速度匀速骑行,问他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,当S一定的时候,VT成反比,两次行程的平均速度之比是4:5,故两次行程所用时间之比T1:T2=5:4。设一个下坡的时间是1,一个上坡的时间是n,则上坡速度是下坡速度的1/n。A-B-A-B的过程经历了2个上坡和1个下坡,则T1=2n+1;B-A-B-A的过程经历了2个下坡和1个上坡,则T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故选A。51、在列车平行轨道上,甲、乙两列火车相对开来。甲列火车长236米,每秒行38米;乙列火车长275米,已知这两列火车错车开过用了7秒钟,则乙列火车按这个速度通过长为2000米的隧道需要()秒钟。

A、65

B、70

C、75

D、80

【答案】:答案:A

解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,选A。52、1,6,36,216,()

A、1296

B、1297

C、1299

D、1230

【答案】:答案:A

解析:公比为6的等比数列。故选A。53、60名员工投票从甲、乙、丙三人中评选最佳员工,选举时每人只能投票选举一人,得票最多的人当选。开票中途累计,前30张选票中,甲得15票,乙得10票,丙得5票。问在尚未统计的选票中,甲至少再得多少票就一定当选?()

A、15

B、13

C、10

D、8

【答案】:答案:B

解析:构造最不利,由题意,还剩30名员工没有投票,考虑最不利的情况,乙对甲的威胁最大,先给乙5张选票,甲乙即各有15张选票,其余25张选票中,甲只要在获得13张选票就可以确定当选。故选B。54、2,3,6,15,()

A、25

B、36

C、42

D、64

【答案】:答案:C

解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故选C。55、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。56、某农户在鱼塘里放养了一批桂花鱼苗。过了一段时间,为了得知鱼苗存活数量,他先从鱼塘中捕出200条鱼,做上标记之后,再放回鱼塘,过几天后,再从鱼塘捕出500条鱼,其中有标记的鱼苗有25条。假设存活的鱼苗在这几天没有死,则这个鱼塘里存活鱼苗的数量最有可能是()条。

A、1600

B、2500

C、3400

D、4000

【答案】:答案:D

解析:由的25/200=500/x,解得x=4000。故选D。57、-3,-2,1,6,()

A、8

B、11

C、13

D、15

【答案】:答案:C

解析:相邻两项之差依次为1,3,5,(7),应填入13。故选C。58、一人上楼,边走边数台阶。从一楼走到四楼,共走了54级台阶。如果每层楼之间的台阶数相同,他一直要走到八楼,问他从一楼到八楼一共要走多少级台阶?()

A、126

B、120

C、114

D、108

【答案】:答案:A

解析:从一楼走到四楼,共走了54级台阶,而他实际走了3层楼的高度,所以每层楼的台阶数为54÷3=18级。他从一楼到八楼一共要走7层楼,因此共要走7×18=126级台阶。故选A。59、2,12,40,112,()

A、224

B、232

C、288

D、296

【答案】:答案:C

解析:原数列可以写成1×2,3×4,5×8,7×16,前一个乘数数列为1,3,5,7,是等差数列,下一项是9,后一个乘数数列为2,4,8,16,是等比数列,下一项是32,所以原数列空缺项为9×32=288。故选C。60、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故选C。61、2,3,7,22,155,()

A、2901

B、3151

C、3281

D、3411

【答案】:答案:D

解析:7=3×2+1,22=7×3+1,155=22×7+1,即所填数字为22×155+1=3411。故选D。62、7.1,8.6,14.2,16.12,28.4,()

A、32.24

B、30.4

C、32.4

D、30.24

【答案】:答案:A

解析:奇数项和偶数项间隔来看,整数部分和小数部分分别构成公比为2的等比数列。故选A。63、某楼盘的地下停车位,第一次开盘时平均价格为15万元/个;第二次开盘时,车位的销售量增加了一倍、销售额增加了60%。那么,第二次开盘的车位平均价格为()。

A、10万元/个

B、11万元/个

C、12万元/个

D、13万元/个

【答案】:答案:C

解析:销售额=平均价格×销售量,已知第一次开盘平均价格为15万元/个,赋销售量为1,则销售额为15万。第二次开盘时,销售量增加了一倍,即为2,销售额增加了60%,得销售额为15×(1+60%)=24(万元),故第二次开盘平均价格为24÷2=12(万元/个)。故选C。64、6,21,43,72,()

A、84

B、96

C、108

D、112

【答案】:答案:C

解析:依次将相邻两个数中后一个数减去前一个数得15,22,29,构成公差为7的等差数列,即所填数字为72+29+7=108。故选C。65、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。66、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一项-前一项=212,即所填数字为536+212=738。故选B。67、30,42,56,72,()

A、86

B、60

C、90

D、94

【答案】:答案:C

解析:第一次做差之后为12、14、16,是公差为2的等差数列,下一个应为18,原数列下一项为18+72=90。故选C。68、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。69、1,10,3,5,()

A、4

B、9

C、13

D、15

【答案】:答案:C

解析:把每项变成汉字为一、十、三、五、十三的笔画数1,2,3,4,5等差。故选C。70、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次进位,像这样的三位数总共有多少个? ()

A、48

B、126

C、174

D、180

【答案】:答案:C

解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的数是0、2、4、6、8。又因为与这个三位数相加有且只有一次进位,所以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,十位可以是0、1、2、3、4、5、6七个数,百位是1-9九个数,这种情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有174(48+126=174)个,即:像这样的三位数总共有174个。故选C。71、假设地球上新生成的资源的增长速度是一定的,照此推算,地球上的资源可供110亿人生活90年,或者可供90亿人生活210年。为了使人类能够不断繁衍,那么地球最多能养活多少亿人?()

A、70

B、75

C、80

D、100

【答案】:答案:B

解析:设地球的原始资源可供x亿人生存一年,每年增长的资源可供y亿人生存一年,即x+90y=90×110,x+210y=210×90,两式联立得y=75,为了使人类能够不断繁衍,那么地球最多能养活75亿人。故选B。72、7,9,-1,5,()

A、3

B、-3

C、2

D、-2

【答案】:答案:B

解析:第三项=(第一项-第二项)/2=>-1=(7-9)/25=(9-(-1))/2-3=(-1-5)/2。故选B。73、5,12,24,36,52,()

A、58

B、62

C、68

D、72

【答案】:答案:C

解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是从小到大的质数和,所以下一个是31+37=68。故选C。74、140支社区足球队参加全市社区足球淘汰赛,每一轮都要在未失败过的球队中抽签决定比赛对手,如上一轮未失败过的球队是奇数,则有一队不用比赛直接进人下—轮。问夺冠的球队至少要参加几场比赛? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根据题意,如果是奇数队的话,有一队轮空,自动进入下一场。题目问冠军至少需要参加几场比赛,为了让冠军参加的场次尽可能的少,每次轮空自动进入下一场的都是冠军。整个比赛过程为:140-70-35-18-9-5-3-2-1,需要进行8轮,有4轮是轮空的。所以冠军至少需要进行4场比赛。故选B。75、两个人带着宠物狗玩游戏,两人相距200米,并以相同速度1米/秒相向而行,与此同时,宠物狗以3米/秒的速度,在两人之间折返跑,当两人相距60米时,那么宠物狗总共跑的距离为?()

A、270米

B、240米

C、210米

D、300米

【答案】:答案:C

解析:根据狗与两人同时出发可知,狗与两人的运动时间相同。两人从相距200米,相向运动至60米,共行驶200-60=140(米),设两人运动时间为t,有140=(1+1)×t,解得t=70秒。则狗总共跑的距离为3×70=210(米)。故选C。76、4/5,16/17,16/13,64/37,()

A、64/25

B、64/21

C、35/26

D、75/23

【答案】:答案:A

解析:已知数列可转化为:8/10,16/17,32/26,64/37,(),分子8,16,32,64,()是公比为2的等比数列,分母10,17,26,37,()构成二级等差数列。故第五项的分子应是128,分母是50,约分后为64/25。故选A。77、某校二年级全部共3个班的学生排队.每排4人,5人或6人,最后一排都只有2人.这个学校二年级有()名学生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由题意知,学生数除以4、5、6均余2,由代入法可以得到,只有B项满足条件。78、41,59,32,68,72,()

A、28

B、36

C、40

D、48

【答案】:答案:A

解析:两两分组得到(41,59),(32,68),(72,()),发现组内做和均为100。故选A。79、有4堆木材,都堆成正三角形垛,层数分别为5,6,7,8层,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5层木材有1+2+3+4+5=15,6层木材有1+2+3+4+5+6=21,7层木材有1+2+3+4+5+6+7=28,8层木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故选B。80、调研人员在一次市场调查活动中收回了435份调查问卷,其中80%的调查问卷上填写了被调查者的手机号码。那么调研人员至少需要从这些调查表中随机抽出多少份,才能保证一定能找到两个手机号码后两位相同的被调查者?()

A、101

B、175

C、188

D、200

【答案】:答案:C

解析:在435份调查问卷中有435×20%=87份没有写手机号;且手机号码后两位可能出现的情况一共10×10=100种,因此要保证一定能找到两个手机号码后两位相同的被调查者,至少需要抽取87+100+1=188份。故选C。81、依法纳税是公民的义务,按规定,全月工资薪金所得不超过800元的部分不必纳税,超过800元的部分,按下列分段累进计算税款,某人5月份应交纳此项税款26.78元,则他的当月工资薪金所得介于()。

A、800~900

B、900~1200

C、1200~1500

D、1500~2800

【答案】:答案:C

解析:根据表格:工资中800~1300的部分,需纳税500×5%=25(元);还剩税款26.78-25=1.78(元),即在1300元以上的部分为(元),则他当月工资薪金为1300+17.8=1317.8(元)。故选C。82、0,4,18,(),100

A、48

B、58

C、50

D、38

【答案】:答案:A

解析:思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列。思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100。思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100。思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100可以发现:0,2,6,(12),20依次相差2,4,(6),8。思路五:0=12×0;4=22×1;18=32×2;()=X2×Y;100=52×4所以()=42×3。83、一条马路的两边各立着10盏电灯,现在为了节省用电,决定每边关掉3盏,但为了安全,道路起点和终点两边的灯必须是亮的,而且任意一边不能连续关掉两盏。问总共有多少种方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一边7盏亮着的灯形成6个空位,把3盏熄灭的灯插进去,则共有=400种方案。故选C。84、在某城市中,有60%的家庭订阅某种日报,有85%的家庭有电视机。假定这两个事件是独立的,今随机抽出一个家庭,所抽家庭既订阅该种日报又有电视机的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是独立重复试验,故既订阅该中日报又有电视机的概率是60%×85%=51%。故选D。85、8,16,22,24,()

A、18

B、22

C、26

D、28

【答案】:答案:A

解析:8×2-0=16,16×2-10=22,22×2-20=24,前一项×2-修正项=后一项。即所填数字为24×2-30=18。故选A。86、2,3,6,15,()

A、25

B、36

C、42

D、64

【答案】:答案:C

解析:相邻两项间做差。做差后得到的数为1,3,9;容易观察出这是一个等比数列,所以做差数列的下一项为27,则答案为15+27=42。故选C。87、6,3,5,13,2,63,()

A、-36

B、-37

C、-38

D、-39

【答案】:答案:B

解析:6×3-5=13,3×5-13=2,5×13-2=63,第四项=第一项×第二项-第三项,即所填数字为13×2-63=-37。故选B。88、12,23,34,45,56,()

A、66

B、67

C、68

D、69

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数,构成公差为11的等差数列,即所填的数字为56+11=67。故选B。89、21,59,1117,2325,(),9541

A、3129

B、4733

C、6833

D、8233

【答案】:答案:B

解析:原数列各项可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分数字作差后构成等比数列,后半部分作差后构成等差数列。因此未知项为4733。故选B。90、小王登山,上山的速度是4km/h,到达山顶后原路返回,速度为6km/h,设山路长为9km,小王的平均速度为()km/h。

A、5

B、4.8

C、4.6

D、4.4

【答案】:答案:B

解析:平均速度为总路程除以总时间,即(2×9)÷(9÷4+9÷6)=4.8km/h。故选B。91、某机场一条自行人行道长42m,运行速度0.75m/s。小王在自行人行道的起始点将一件包裹通过自动人行道传递给位于终点位置的小明。小明为了节省时间,在包裹开始传递时,沿自行人行道逆行领取包裹并返回。假设小明的步行速度是1m/s,则小明拿着包裹并回到自行人行道终点共需要的时间是()。

A、4秒

B、42秒

C、48秒

D、56秒

【答案】:答案:C

解析:小明沿自行人行道走,取到包裹用时为42/(1+0.75)=24秒,小明运动距离24×1=24米,返回时间=24/1=24秒,共用时24+24=48秒。故选C。92、甲、乙两人在一条400米的环形跑道上从相距200米的位置出发,同向匀速跑步。当甲第三次追上乙的时候,乙跑了2000米。问甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:环形同点同向出发每追上一次,甲比乙多跑一圈。第一次由于是不同起点,甲比乙多跑原来的差距200米;之后两次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,时间相同,则速度比与路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故选B。93、商店购入一百多件A款服装,其单件进价为整数元,总进价为1万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A款服装?()

A、13

B、15

C、17

D、19

【答案】:答案:C

解析:推出A款服装有125件,进价为80元,B款服装进价为80×0.75=60(元),B款服装定价为60×1.6=96(元),利润为96-60=36(元),A款服装利润为36×2=72(元),所以A款服装售价为80+72=152(元)。销售数量至少为2500÷152=16.4,取整为17件。故选C。94、在一次知识竞赛中,甲、乙两单位平均分为85分,甲单位得分比乙单位高10分,则乙单位得分为()分。

A、88

B、85

C、80

D、75

【答案】:答案:C

解析:根据“甲、乙平均分为85分”,可得总分为85×2=170(分)。设乙得分为x,那么甲得分为x+10,由题意有x+x+10=170,解得x=80。故选C。95、有一只青蛙在井底,每天上爬10米,又下滑6米,这口井深20米,这只青蛙爬出井口至少需要多少天?()

A、2

B、3

C、4

D、5

【答案】:答案:C

解析:第一天青蛙爬了10-6=4米,距离井口20-4=16米;第二天爬了4+(10-6)=8米,距离井口20-8=12米;第三天爬了8+(10-6)=12米,距离井口20-12=8米<10米;第四天青蛙可以直接爬出井口。这只青蛙爬出井口至少要4天。故选C。96、5,4,10,8,15,16,(),()

A、20,18

B、18,32

C、20,32

D、18,36

【答案】:答案:C

解析:从题干中给出的数字不难看出,奇数项5,10,15,(20)构成公差为5的等差数列,偶数项4,8,16,(32)构成公比为2的等比数列。故选C。97、2,3,6,18,108,()

A、1944

B、1620

C、1296

D、1728

【答案】:答案:A

解析:2×3=6,3×6=18,6×18=108,……前两项相乘等于下一项,则所求项为18×108,尾数为4。故选A。98、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。99、3,-6,12,-24,()

A、42

B、44

C、46

D、48

【答案】:答案:D

解析:公比为-2的等比数列。故选D。100、甲乙两人需托运行李。托运收费标准为10kg以下6元/kg,超出10kg部分每公斤收费标准略低一些。已知甲乙两人托运费分别为109.5元、78元,甲的行李比乙重了50%。那么,超出10kg部分每公斤收费标准比10kg以内的低了()元。

A.1.5

B.2.5

C.3.5

D.4.5

【答案】:答案:A

解析:解析一:分段计费问题,设乙的行李超出的重量为x,即乙的行李总重量为10+x,则甲的行李重量为1.5×(10+x)。所以计算超出部分的重量为1.5×(10+x)-10=5+1.5x,超出金额为49.5元,所以按照比例,乙的行李超出了重量x,超出金额为18元,得到,解得x=4,所以超出部分单价为18÷4=4.5元。所以超出10公斤部分每公斤收费标准比10公斤以内的低了6-4.5=1.5元。解析二:盈亏思路,由于甲的行李重量比乙的多50%,所以分段看,乙超出部分为18元,所以对应的多50%的重量,应该是27元。则从甲超出的49.5元中扣除27元,还剩22.5元,这个钱数应该对应着10公斤的50%,即5公斤22.5元。所以每公斤超出部分为4.5元,超出10公斤部分每公斤收费标准比10公斤以内的低了6-4.5=1.5,得解。故正确答案为A。速解:靠常识解决,题目中说“超出10公斤部分每公斤收费标准略低一些。”所以选稍微低一点的101、2,6,18,54,()

A、186

B、162

C、194

D、196

【答案】:答案:B

解析:该数列是以3为公比的等比数列,故空缺项为:54×3=162。故选B。102、一人骑车上班需要50分钟,途中骑了一段时间后自行车坏了,只好推车去上班,结果晚到10分钟,如果骑车的速度比步行的速度快一倍,则步行了多少分钟?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:设骑车速度为2,步行速度为1,设步行时间为t分钟,由题意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分钟。故选A。103、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]

A、30

B、32

C、34

D、36

【答案】:答案:A

解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故选A。104、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。105、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。

A、192

B、198

C、200

D、212

【答案】:答案:A

解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。106、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。107、145,120,101,80,65,()

A、48

B、49

C、50

D、51

【答案】:答案:A

解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。108、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。109、一艘轮船从甲地到乙地每小时航行30千米,然后按原路返回,若想往返的平均速度为每小时40千米,则返回时每小时航行()千米。

A、80

B、75

C、60

D、96

【答案】:答案:C

解析:设甲乙两地的距离为1,则轮船从甲地到乙地所用的时间为1/30,如果往返的平均速度为40千米,则往返一次所用的时间为2/40,那么从乙地返回甲地所用时间为2/40-1/30=1/60,所以返回时的速度为每小时1/(1/60)=60千米。故选C。110、8,10,14,18,()

A、24

B、32

C、26

D、20

【答案】:答案:C

解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故选C。111、商店购入一百多件A款服装,其单件进价为整数元,总进价为1万元,已知单件B款服装的定价为其进价的1.6倍,其进价为A款服装的75%,销售每件B款服装的利润为A款服装的一半,某日商店以定价销售A款服装的总销售额超过2500元,问当天至少销售了多少件A款服装?()

A、13

B、15

C、17

D、19

【答案】:答案:C

解析:推出A款服装有125件,进价为80元,B款服装进价为80×0.75=60(元),B款服装定价为60×1.6=96(元),利润为96-60=36(元),A款服装利润为36×2=72(元),所以A款服装售价为80+72=152(元)。销售数量至少为2500÷152=16.4,取整为17件。故选C。112、接受采访的100个大学生中,88人有手机,76人有电脑,其中有手机没电脑的共15人,则这100个学生中有电脑但没手机的共有多少人?()

A、25

B、15

C、5

D、3

【答案】:答案:D

解析:根据有手机没电脑共15人,可得既有手机又有电脑(①部分)的人数为88-15=73人,则有电脑但没手机(②部分)的人数为76-73=3人。故选D。113、有一1500米的环形跑道,甲,乙二人同时同地出发,若同方向跑,50分钟后甲比乙多跑一圈,若以反方向跑,2分钟后二人相遇,则乙的速度为()。

A、330米/分钟

B、360米/分钟

C、375米/分钟

D、390米/分钟

【答案】:答案:B

解析:同向追及50分钟后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分钟后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分钟)。故选B。114、某农场有36台收割机,要收割完所有的麦子需要14天时间。现收割了7天后增加4台收割机,并通过技术改造使每台机器的效率提升,问收割完所有的麦子还需要几天。

A.3

B.4

C.5

D.6

【答案】:答案:D

解析:方法一:赋值法,赋值每台收割机每天的工作效率为1,则工作总量为36×14,剩下的36×7由36+4=40台收割机完成,技术改造后每台收割机效率为,故剩下需要的时间为。方法二:比例法。由题意,原有收割机36台,增加4台后变为40台,提高效率5%后相当于原先40×(1+5%)=42台收割机的工作效率。效率比为6∶7,故所有时间比为7∶6,还需6天即可完成。故正确答案为D。115、7,21,14,21,63,(),63

A、35

B、42

C、40

D、56

【答案】:答案:B

解析:三个一组,7、21、14中第二个数是第一个数和第三个数的和,即所填数字为63-21=42。故选B。116、2,6,13,39,15,45,23,()

A、46

B、66

C、68

D、69

【答案】:答案:D

解析:6=2×3,39=13×3,45=15×3。两个数为一组,每组中的第二个数是第一个数的三倍,即所填数字为23×3=69。故选D。117、学校举行象棋比赛,共有甲、乙、丙、丁4支队。规定每支队都要和另外3支队各比赛一场,胜得3分,败得0分,平双方各得1分。已知:(1)这4支队三场比赛的总得分为4个连续的奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方打成平局,其中有一场是与丙队打成平局的。问丙队得几分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支队均比赛3场,因此最高分不超过9分,又知总得分为4个连续的奇数,因此得分有3、5、7、9和1、3、5、7两种情况。若最高分为9分,那么排名第二的队最多赢现场得6分,不可能得7分,不符合题意,故乙队得7分,即2胜1平。由条件(3)知,丁队恰有两场同对方打成平局,积分2分,为偶数,故另一场只能为胜,共得5分。由此可知,丙队得分为1或3分。由于丁队一场未败,故乙队获胜的两场只能是甲队和丙队。目前已知丙队战两场,一负一平,积1分,另一场无论是胜或平,积分均为偶数,故这一场只能为负,总积分为1分。故选A。118、145,120,101,80,65,()

A、48

B、49

C、50

D、51

【答案】:答案:A

解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇数项,每项等于首项为12,公差为-2的平方加1;偶数项,每项等于首项为11,公差为-2的平方减1,即所填数字为72-1=48。故选A。119、2,3,8,27,32,(),128

A、64

B、243

C、275

D、48

【答案】:答案:B

解析:间隔组合数列。奇数项是公比为4的等比数列,偶数项是公比为9的等比数列,所求项为27×9=(243)。故选B。120、7,9,-1,5,()

A、3

B、-3

C、2

D、-1

【答案】:答案:B

解析:7+9=16,9+(-1)=8,(-1)+5=4,5+(-3)=2,其中16,8,4,2等比。故选B。121、甲、乙和丙三种不同浓度、不同规格的酒精溶液,每瓶重量分别为3公斤、7公斤和9公斤,如果将甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,得到的酒精浓度分别为50%,50%和60%。如果将三种酒精合各一瓶混合,得到的酒精中要加入多少公斤纯净水后,其浓度正好是50%?()

A、1

B、1.3

C、1.6

D、1.9

【答案】:答案:C

解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分别混合,相当于两瓶甲、两瓶乙、两瓶丙混合,前两种浓度都是50%,所以只需要加入适量水使得乙丙混合浓度由60%变为50%即可。设加水x,可将浓度为60%的酒精溶液溶度变为50%,即,解得x=3.2(公斤)。此时甲乙,甲丙和乙丙溶液各一瓶混合后浓度必然为50%。若甲、乙和丙各一瓶混合时浓度仍然为50%,则需加水为(公斤)。故选C。122、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小数点之前满足规律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D两项。小数点之后构成等比数列8,16,32,64,128,小数点之后的数超过三位取后两位,所以未知项是160.28。故选A。123、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。124、祖父今年65岁,3个孙子的年龄分别是15岁、13岁与9岁,问多少年后3个孙子的年龄之和等于祖父的年龄?()

A、23

B、14

C、25

D、16

【答案】:答案:B

解析:设n年后3个孙子的年龄之和等于祖父的年龄,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故选B。125、2,7,14,21,294,()

A、28

B、35

C、273

D、315

【答案】:答案:D

解析:21=7+14,14=2×7,294=14×21,为两项相加、相乘交替得到后-项,即所填数字为21+294=315。故选D。126、2,1,2/3,1/2,()

A、3/4

B、1/4

C、2/5

D、5/6

【答案】:答案:C

解析:数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5。故选C。127、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()

A、5

B、7

C、9

D、11

【答案】:答案:B

解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。128、1,1,2,6,30,240,()

A、1200

B、1800

C、2400

D、3120

【答案】:答案:D

解析:1*2=2,2*3=6,6*5=30,30*8=240,后面除以前面的商是斐波那契数列2、3、5、8,即后一项是前面2项的和,8后面是13,240后面应该是240*13=3120。故选D。129、某人租下一店面准备卖服装,房租每月1万元,重新装修花费10万元。从租下店面到开始营业花费3个月时间。开始营业后第一个月,扣除所有费用后的纯利润为3万元。如每月纯利润都比上月增加2000元而成本不变,问该店在租下店面后第几个月内收回投资?()

A、7

B、8

C、9

D、10

【答案】:答案:A

解析:由题意可得租下店面前3个月成本为1×3+10=13(万元),租下店面第4个月开始营业,营业后各月获得的纯利润构成首项为3万元、公差为0.2万元的等差数列:3万元、3.2万元、3.4万元、3.6万元。由3+3.2+3.4+3.6=13.2>13,即第7个月收回投资。故选A。130、130,68,30,(),2

A、11

B、12

C、10

D、9

【答案】:答案:C

解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故选C。131、在一次知识竞赛中,甲、乙两单位平均分为85分,甲单位得分比乙单位高10分,则乙单位得分为()分。

A、88

B、85

C、80

D、75

【答案】:答案:C

解析:根据“甲、乙平均分为85分”,可得总分为85×2=170(分)。设乙得分为x,那么甲得分为x+10,由题意有x+x+10=170,解得x=80。故选C。132、25与一个三位数相乘个位是0,与这个三位数相加有且只有一次进位,像这样的三位数总共有多少个? ()

A、48

B、126

C、174

D、180

【答案】:答案:C

解析:因为25与一个三位数相乘个位是0,所以这个三位数个位上的数是0、2、4、6、8。又因为与这个三位数相加有且只有一次进位,所以当个位是0、2、4时,十位必须是8或9,百位是1-8八个数都可以,这种情况有48(8乘2乘3等于48)个数满足条件;当个位是6或8时,十位可以是0、1、2、3、4、5、6七个数,百位是1-9九个数,这种情况有126(9乘7乘2等于126)个数满足条件;终上所述一共有174(48+126=174)个,即:像这样的三位数总共有174个。故选C。133、将17拆分成若干个自然数的和,这些自然数的乘积的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一个整数拆分成若干个自然数之和,有大于4的数,则把大于4的这个数再分成一个2与另一个大于2的自然数之和,则这个2与大于2的这个数的乘积肯定比这个大于4的数更大。另外,如果拆分的数中含有1,则对乘积增大没有贡献,因此不能考虑。因此,要使加数之积最大,加数只能是2和3。但是,若加数中含有3个2,则不如将它换成2个3。因为2×2×2=8,而3×3=9。故拆分出的自然数中,至多含有两个2,而其余都是3。故将17拆分为17=3+3+3+3+3+2时,其乘积最大,最大值为243×2=486。故选B。134、甲乙两地相距500公里,在1厘米等于50公里比例尺的地图上,两地之间的距离是()厘米。

A、5

B、10

C、15

D、100

【答案】:答案:B

解析:1公分=50公里,500公里=10公分,所求为500×1/50=10厘米。故选B。135、水面上有三艘同向行驶的轮船,其中甲船的时速为63公里,乙、丙两船的时速均为60公里,但由于故障,丙船每连续行驶30分钟后必须停船2分钟。早上10点,三船到达同一位置,问1小时后,甲、丙两船最多相距多少公里?()

A、5

B、7

C、9

D、11

【答案】:答案:B

解析:1小时内,甲船行驶了63公里,丙船最多停车4分钟,即行驶56分钟,行驶路程为56公里。故最多相距7公里。故选B。136、1,1,3,7,17,41,()

A、89

B、99

C、109

D、119

【答案】:答案:B

解析:第三项=第二项×2+第一项,99=41×2+17。故选B。137、8,4,8,10,14,()

A、22

B、20

C、19

D、24

【答案】:答案:C

解析:题干数列为递推数列,规律为:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一项÷2+第二项=第三项,因此未知项为10÷2+14=19。故选C。138、119,83,36,47,()

A、-37

B、-11

C、11

D、37

【答案】:答案:B

解析:119=83+36,83=36+47,即所填数字为36-47=-11。故选B。139、7,7,9,17,43,()

A、119

B、117

C、123

D、121

【答案】:答案:C

解析:依次将相邻两项做差得0,2,10,26,再次做差得2,6,18。构成一个公比为3的等比数列,即所填数字为43+26+18×3=123。故选C。140、12,23,34,45,56,()

A、66

B、67

C、68

D、69

【答案】:答案:B

解析:依次将相邻两个数中后一个数减去前一个数,构成公差为11的等差数列,即所填的数字为56+11=67。故选B。141、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故选D。142、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇数项1、0、-1、(-2)是公差为-1的等差数列;偶数项2、3、4是连续自然数。故选A。143、有一支参加阅兵的队伍正在进行训练,这支队伍的人数是5的倍数且不少于1000人,如果按每横排4人编队,最后少3人,如果按每横排3人编队,最后少2人;如果按每横排2人编队,最后少1人。请问,这支队伍最少有多少人?()

A、1045

B、1125

C、1235

D、1345

【答案】:答案:A

解析:问最少,由小到大代入选项:代入A选项,(1045+3)能被4整除;(1045+2)能被3整除;(1045+1)能被2整除,满足题意。故选A。144、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]

A、30

B、32

C、34

D、36

【答案】:答案:A

解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故选A。145、4,5,7,9,13,15,()

A、17

B、19

C、18

D、20

【答案】:答案:B

解析:各项减2后为质数列,故下一项为17+2=19。故选B。146、为帮助果农解决销路,某企业年底买了一批水果,平均发给每部门若干筐之后还多了12筐,如果再买进8筐则每个部门可分得10筐,则这批水果共有()筐。

A、192

B、198

C、200

D、212

【答案】:答案:A

解析:由于再买进8筐则每个部门可分得10筐,则总筐数加8应能被10整除,排除B、C。将A项代入题目,可得部门数为(192+8)÷10=20(个),则原来平均发给每部门(192-12)÷20=9(筐),水果筐数为整数解,符合题意。故选A。147、30个小朋友围成一圈玩传球游戏,每次球传给下一个小朋友需要1秒。当老师喊“转向”时,要改变传球方向。如果从小华开始传球,老师在游戏开始后的第16、31、49秒喊“转向”,那么在第多少秒时,球会重新回到小华手上?()

A、68

B、69

C、70

D、71

【答案】:答案:A

解析:设小华的位置为0号,按顺时针方向编号依次为0号、1号、2号、……、29号。小华以顺时针方向开始传球。①经过16秒,顺时针传到16号;②转向:经过15秒(31-16=15),逆时针传到1号;③转向:经过18秒(49-31=18),顺时针传到19号;④转向:经过19秒,逆时针传回到小华手中。在第49+19

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论