




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省深圳实验学校高中部2023-2024学年高一数学第二学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是26;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月2日到10月6日认购量的分散程度比成交量的分散程度更大.则上述判断错误的个数为()A.4 B.3 C.2 D.12.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.倍 B.2倍 C.倍 D.倍3.已知数列的前项和为,且,,则()A.127 B.129 C.255 D.2574.给出下列四个命题:①垂直于同一条直线的两条直线互相平行;②平行于同一条直线的两条直线平行;③若直线满足,则;④若直线,是异面直线,则与,都相交的两条直线是异面直线.其中假命题的个数是()A.1 B.2 C.3 D.45.设l是直线,,是两个不同的平面,下列命题正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则6.“φ=”是“函数y=sin(x+φ)为偶函数的”()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.若直线与圆相切,则()A. B. C. D.8.已知一个几何体是由半径为2的球挖去一个三棱锥得到(三棱锥的顶点均在球面上).若该几何体的三视图如图所示(侧视图中的四边形为菱形),则该三棱锥的体积为()A. B. C. D.9.已知函数,若关于的不等式的解集为,则A. B.C. D.10.已知是两条不重合的直线,为两个不同的平面,则下列说法正确的是()A.若,是异面直线,那么与相交B.若//,,则C.若,则//D.若//,则二、填空题:本大题共6小题,每小题5分,共30分。11.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.12.长方体的一个顶点上的三条棱长分别是3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积是13.当时,不等式成立,则实数k的取值范围是______________.14.某地甲乙丙三所学校举行高三联考,三所学校参加联考的人数分别为200、300、400。现为了调查联考数学学科的成绩,采用分层抽样的方法在这三所学校中抽取一个样本,已知甲学校中抽取了40名学生的数学成绩,那么在丙学校中抽取的数学成绩人数为_________。15.已知,则_________.16.如图,正方体的棱长为2,点在正方形的边界及其内部运动,平面区域由所有满足的点组成,则的面积是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某校对高二年段的男生进行体检,现将高二男生的体重(kg)数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[60,65)的人数为1.根据一般标准,高二男生体重超过65kg属于偏胖,低于55kg属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[60,65)内的频率,并补全频率分布直方图;(2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.18.在中,为上的点,为上的点,且.(1)求的长;(2)若,求的余弦值.19.已知函数.(1)求函数的定义域;(2)当为何值时,等式成立?20.设数列的前项和为,且.(1)求数列的通项公式;(2)设,求数列的前项和.21.内角的对边分别为,已知.(1)求;(2)若,,求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
将国庆七天认购量和成交量从小到大排列,即可判断①;计算成交量的平均值,可由成交量数据判断②;由图可判断③;计算认购量的平均值与方差,成交量的平均值与方差,对方差比较即可判断④.【详解】国庆七天认购量从小到大依次为:91,100,105,107,112,223,276成交量从小到大依次为:8,13,16,26,32,38,166对于①,成交量的中为数为26,所以①正确;对于②,成交量的平均值为,有1天成交量超过平均值,所以②错误;对于③,由图可知认购量与日期没有正相关性,所以③错误;对于④,10月2日到10月6日认购量的平均值为方差为10月2日到10月6日成交量的平均值为方差为所以由方差性质可知,10月2日到10月6日认购量的分散程度比成交量的分散程度更小,所以④错误;综上可知,错误的为②③④故选:B【点睛】本题考查了统计的基本内容,由图示分析计算各个量,利用方差比较数据集中程度,属于基础题.2、C【解析】
以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可.【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三家性的高变为原来的sin45°=,故直观图中三角形面积是原三角形面积的.故选C.【点睛】本题重点考查了斜二侧画法、平面图形的面积的求解方法等知识,属于中档题.解题关键是准确理解斜二侧画法的内涵,与x轴平行的线段长度保持不变,与y轴平行的线段的长度减少为原来的一半.3、C【解析】
利用迭代关系,得到另一等式,相减求出,判断数列是否为等比数列,利用等比数列求和公式可得.【详解】因为,,所以,相减得,,,又,所以,,所以数列是等比数列,所以,故选C.【点睛】本题考查等比数列的求和,数列通项公式的求法,考查计算求解能力,属于中档题.4、B【解析】
利用空间直线的位置关系逐一分析判断得解.【详解】①为假命题.可举反例,如a,b,c三条直线两两垂直;②平行于同一条直线的两条直线平行,是真命题;③若直线满足,则,是真命题;④是假命题,如图甲所示,c,d与异面直线,交于四个点,此时c,d异面,一定不会平行;当点B在直线上运动(其余三点不动),会出现点A与点B重合的情形,如图乙所示,此时c,d共面且相交.故答案为B【点睛】本题主要考查空间直线的位置关系,意在考查学生对该知识的理解掌握水平和分析推理能力.5、D【解析】
利用空间线线、线面、面面的位置关系对选项进行逐一判断,即可得到答案.【详解】A.若,,则与可能平行,也可能相交,所以不正确.B.若,,则与可能的位置关系有相交、平行或,所以不正确.C.若,,则可能,所以不正确.D.若,,由线面平行的性质过的平面与相交于,则,又.
所以,所以有,所以正确.故选:D【点睛】本题考查面面平行、垂直的判断,线面平行和垂直的判断,属于基础题.6、A【解析】试题分析:当时,时,是偶函数,当是偶函数时,,所以不能推出是,所以是充分不必要条件,故选A.考点:三角函数的性质7、C【解析】
利用圆心到直线的距离等于圆的半径即可求解.【详解】由题得圆的圆心坐标为(0,0),所以.故选C【点睛】本题主要考查直线和圆的位置关系,意在考查学生对该知识的理解掌握水平,属于基础题.8、C【解析】由三视图可知,三棱锥的体积为9、B【解析】
由题意可得,且,3为方程的两根,运用韦达定理可得,,的关系,可得的解析式,计算,(1),(4),比较可得所求大小关系.【详解】关于的不等式的解集为,可得,且,3为方程的两根,可得,,即,,,,可得,(1),(4),可得(4)(1),故选.【点睛】本题主要考查二次函数的图象和性质、函数与方程的思想,以及韦达定理的运用。10、D【解析】
采用逐一验证法,结合线面以及线线之间的位置关系,可得结果.【详解】若,是异面直线,与也可平行,故A错若//,,也可以在内,故B错若也可以在内,故C错若//,则,故D对故选:D【点睛】本题主要考查线面以及线线之间的位置关系,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
直接利用长度型几何概型求解即可.【详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.12、【解析】
利用长方体的体对角线是长方体外接球的直径,求出球的半径,从而可得结果.【详解】本题主要考查空间几何体的表面积与体积.长方体的体对角线是长方体外接球的直径,设球的半径为,则,可得,球的表面积故答案为.【点睛】本题主要考查长方体与球的几何性质,以及球的表面积公式,属于基础题.13、k∈(﹣∞,1]【解析】
此题先把常数k分离出来,再构造成再利用导数求函数的最小值,使其最小值大于等于k即可.【详解】由题意知:∵当0≤x≤1时(1)当x=0时,不等式恒成立k∈R(2)当0<x≤1时,不等式可化为要使不等式恒成立,则k成立令f(x)x∈(0,1]即f'(x)再令g(x)g'(x)∵当0<x≤1时,g'(x)<0∴g(x)为单调递减函数∴g(x)<g(0)=0∴f'(x)<0即函数f(x)为单调递减函数所以f(x)min=f(1)=1即k≤1综上所述,由(1)(2)得k≤1故答案为:k∈(﹣∞,1].【点睛】本题主要考查利用导数求函数的最值,属于中档题型.14、80【解析】
由题意,求得甲乙丙三所学校抽样比为,再根据甲学校中抽取了40名学生的数学成绩,即可求解丙学校应抽取的人数,得到答案.【详解】由题意知,甲乙丙三所学校参加联考的人数分别为200、300、400,所以甲乙丙三所学校抽样比为,又由甲学校中抽取了40名学生的数学成绩,所以在丙学校应抽取人.【点睛】本题主要考查了分层抽样概念及其应用,其中解答中熟记分层抽样的概念,以及计算的方法是解答的关键,着重考查了推理与运算能力,属于基础题.15、.【解析】
在分式中分子分母同时除以,将代数式转化为正切来进行计算.【详解】由题意得,原式,故答案为.【点睛】本题考查弦的分式齐次式的计算,常利用弦化切的思想求解,一般而言,弦化切思想主要应用于以下两种题型:(1)弦的次分式齐次式:当分式是关于角的次分式齐次式,在分子分母中同时除以,可以将分式化为切的分式来求解;(2)弦的二次整式:当代数式是关于角弦的二次整式时,先除以,将代数式转化为关于角弦的二次分式齐次式,然后在分式分子分母中同时除以,可实现弦化切.16、【解析】,所以点平面区域是底面内以为圆心,以1为半径的外面区域,则的面积是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)三段人数分别为3,2,1(3)【解析】试题分析:(1)利用频率分布直方图的性质能求出求出体重在[60,65)内的频率,由此能补全的频率分布直方图;(2)设男生总人数为n,由,可得n=1000,从而体重超过65kg的总人数300,由此能求出各组应分别抽取的人数;(3)利用频率分布直方图能估计高二男生的体重的中位数与平均数试题解析:(1)体重在内的频率补全的频率分布直方图如图所示.(2)设男生总人数为,由,可得体重超过的总人数为在的人数为,应抽取的人数为,在的人数为,应抽取的人数为,在的人数为,应抽取的人数为.所以在,,三段人数分别为3,2,1.(3)中位数为60kg,平均数为(kg)考点:1.众数、中位数、平均数;2.分层抽样方法;3.频率分布直方图18、(1);(2).【解析】试题分析:本题是正弦定理、余弦定理的应用.(1)中,在中可得的大小,运用余弦定理得到关于的一元二次方程,通过解方程可得的值;(2)中先在中由正弦定理得,并根据题意判断出为钝角,根据求出.试题解析:(1)由题意可得,在中,由余弦定理得,所以,整理得,解得:.故的长为.(2)在中,由正弦定理得,即所以,所以.因为点在边上,所以,而,所以只能为钝角,所以,所以.19、(1);(2).【解析】
(1)根据对数的真数大于零,得出,解出该不等式即可得出函数的定义域;(2)根据对数的运算性质可得出关于的方程,解出即可.【详解】(1)由,得,所以,函数定义域为;(2)由,得,即,可得:,即,即,或,由于,得,所以,不合题意,所以,当时,等式成立.【点睛】本题考查了对数运算以及简单的对数方程的求解,解题时不要忽略真数大于零这一条件的限制,考查运算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届吉林省吉林市普通中学七下英语期末达标测试试题含答案
- 流程主管述职报告
- 4.6.3神经系统支配下的运动 课件 人教版八年级生物上册
- 2025年法律实务模拟考试试题及答案
- 2025年初中语文拼音能力测验试题及答案
- 2025年电子商务专业考试试题及答案
- 2025年电气工程师执业考试题及答案
- 2025年传统手工艺文化传承考试试题及答案
- 2025年动漫设计与制作专业知识测试题及答案
- 2025《重庆市初中学业水平考试》数学
- 家庭急救包物品清单
- 护理安全管理课件
- 附件:小学2025年暑假跨学科实践作业实施方案
- 2025年甘肃省陇南市事业单位招聘247人笔试参考题库及答案详解一套
- 实验室菌种管理制度
- 如何当好一名班主任 课件-2024-2025学年高一下学期班主任工作经验分享
- 2025年心理健康指导师职业资格考试试题及答案
- 2025年苏教版科学六年级下册小升初期末检测题附答案
- 电力安全事故隐患排查
- 【MOOC】人工智能基础-科技大学 中国大学慕课MOOC答案
- 滁州康华电子材料有限公司(5G 基站)集成线路板相关材料项目环境影响报告书
评论
0/150
提交评论