版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年江苏省宿迁市宿迁中学高一下数学期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,若asinA+bsinB<csinC,则△ABC是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.都有可能2.以点为圆心,且经过点的圆的方程为()A. B.C. D.3.函数()的部分图象如图所示,其中是图象的最高点,是图象与轴的交点,则()A. B. C. D.4.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的底层共有灯A.81盏 B.112盏 C.162盏 D.243盏5.已知球面上有三点,如果,且球心到平面的距离为,则该球的体积为()A. B. C. D.6.不等式的解集是:A. B.C. D.7.不等式4xA.-∞,-12C.-∞,-328.直线与直线的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.执行如图所示的程序框图,输出的s值为A. B.C. D.10.已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知向量,满足,且在方向上的投影是,则实数_______.12.已知变量和线性相关,其一组观测数据为,由最小二乘法求得回归直线方程为.若已知,则______.13.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为_________.14.函数的初相是__________.15.已知数列的前项和为,,,则__________.16.若在上是减函数,则的取值范围为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某机构通过对某企业今年的生产经营情况的调查,得到每月利润(单位:万元)与相应月份数的部分数据如表:14712229244241196(1)根据如表数据,请从下列三个函数中选取一个恰当的函数描述与的变化关系,并说明理由,,,;(2)利用(1)中选择的函数,估计月利润最大的是第几个月,并求出该月的利润.18.数列的前n项和满足.(1)求证:数列是等比数列;(2)若数列为等差数列,且,求数列的前n项.19.不等式的解集为______.20.在四棱锥P-ABCD中,四边形ABCD是正方形,PD⊥平面ABCD,且PD=AD=4,点E为线段PA的中点.(1)求证:PC∥平面BDE;(2)求三棱锥E-BCD的体积.21.已知等比数列的公比,且,.(1)求数列的通项公式;(2)设,是数列的前项和,对任意正整数不等式恒成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由正弦定理化已知条件为边的关系,然后由余弦定理可判断角的大小.【详解】∵asinA+bsinB<csinC,∴,∴,∴为钝角.故选A.【点睛】本题考查正弦定理与余弦定理,考查三角形形状的判断,属于基础题.2、B【解析】
通过圆心设圆的标准方程,代入点即可.【详解】设圆的方程为:,又经过点,所以,即,所以圆的方程:.故选B【点睛】此题考查圆的标准方程,记住标准方程的一般设法,代入数据即可求解,属于简单题目.3、D【解析】函数的周期为,四分之一周期为,而函数的最大值为,故,由余弦定理得,故.4、D【解析】
从塔顶到塔底每层灯盏数可构成一个公比为3的等比数列,其和为1.由等比数列的知识可得.【详解】从塔顶到塔底每层灯盏数依次记为a1,a2,a3故选D.【点睛】本题考查等比数列的应用,解题关键是根据实际意义构造一个等比数列,把问题转化为等比数列的问题.5、B【解析】
的外接圆半径为球半径球的体积为,故选B.6、C【解析】
把不等式转化为不等式,即可求解,得到答案.【详解】由题意,不等式,等价于,解得,即不等式的解集为,故选C.【点睛】本题主要考查了一元二次不等式的求解,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】
因式分解不等式,可直接求得其解集。【详解】∵4x2-4x-3≤0,∴【点睛】本题考查求不等式解集,属于基础题。8、B【解析】
联立方程组,求得交点的坐标,即可得到答案.【详解】由题意,联立方程组:,解得,即两直线的交点坐标为,在第二象限,选B.【点睛】本题主要考查了两条直线的位置关系的应用,着重考查了运算与求解能力,属于基础题.9、B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.10、C【解析】设直径的两个端点分别A(a,2)、B(2,b),圆心C为点(-1,1),由中点坐标公式得解得a=-4,b=1.∴半径r=∴圆的方程是:(x+1)1+(y-1)1=5,即x1+y1+4x-1y=2.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
在方向上的投影为,把向量坐标代入公式,构造出关于的方程,求得.【详解】因为,所以,解得:,故填:.【点睛】本题考查向量的数量积定义中投影的概念、及向量数量积的坐标运算,考查基本运算能力.12、355【解析】
根据回归直线必过样本点的中心,根据横坐标结合回归方程求出纵坐标即可得解.【详解】由题:,回归直线方程为,所以,.故答案为:355【点睛】此题考查根据回归直线方程求样本点的中心的纵坐标,关键在于掌握回归直线必过样本点的中心,根据平均数求解.13、0.5【解析】
由互斥事件的概率加法求出射手在一次射击中超过8环的概率,再利用对立事件的概率求出不超过8环的概率即可.【详解】由题意,射中10环、9环、8环的概率分别为0.2、0.3、0.1,所以射手的一次射击中超过8环的概率为:0.2+0.3=0.5故射手的一次射击中不超过8环的概率为:1-0.5=0.5故答案为0.5【点睛】本题主要考查了对立事件的概率,属于基础题.14、【解析】
根据函数的解析式即可求出函数的初相.【详解】,初相为.故答案为:【点睛】本题主要考查的物理意义,属于简单题.15、【解析】
先利用时,求出的值,再令,由得出,两式相减可求出数列的通项公式,再将的表达式代入,可得出.【详解】当时,则有,;当时,由得出,上述两式相减得,,得且,所以,数列是以为首项,以为公比的等比数列,则,,那么,因此,,故答案为.【点睛】本题考查等比数列前项和与通项之间的关系,同时也考查了等比数列求和,一般在涉及与的递推关系求通项时,常用作差法来求解,考查计算能力,属于中等题.16、【解析】
化简函数解析式,,时,是余弦函数单调减区间的子集,即可求解.【详解】,时,,且在上是减函数,,,因为解得.【点睛】本题主要考查了函数的三角恒等变化,余弦函数的单调性,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),理由见解析;(2)第5个月,利润最大为245.【解析】
(1)根据题中数据,即可直接判断出结果;(2)将题中,代入,求出参数,根据二次函数的性质,以及自变量的范围,即可得出结果.【详解】(1)由题目中的数据知,描述每月利润(单位:万元)与相应月份数的变化关系函数不可能是常数函数,也不是单调函数;所以,应选取二次函数进行描述;(2)将,代入,解得,,∴,,,,∴,万元.【点睛】本题主要考查二次函数的应用,熟记二次函数的性质即可,属于常考题型.18、(1)见证明;(2)【解析】
(1)利用与的关系,即要注意对进行讨论,再根据等比数列的定义,证明为常数;(2)利用错位相减法对数列进行求和.【详解】解(1)当时,,所以因为①,所以当时,②,①-②得,所以,所以,所以是首项为2,公比为2的等比数列.(2)由(1)知,,所以,因为,所以,设的公差为,则,所以所以,,所以,则,以上两式相减得:,所以.【点睛】数列为等差数列,数列为等比数列,则数列的求和可采用错位相减法求和,注意求和后要保证常数的准确性.19、【解析】
根据一元二次不等式的解法直接求解即可.【详解】因为方程的根为:,,所以不等式的解集为.故答案为:.【点睛】本题考查一元二次不等式的解法,考查对基础知识和基本技能的掌握,属于基础题.20、(1)见解析(2)16【解析】
(1)证明EO∥PC得到PC∥平面BDE.(2)先证明EF就是三棱锥E-BCD的高,再利用体积公式得到三棱锥E-BCD的体积.【详解】(1)证明:连结AC交BD于O,连结EO.∵四边形ABCD是正方形,在ΔPAC中,O为AC中点,又∵E为PA中点∴EO∥PC.又∵PC⊄平面BDE,EO⊂平面BDE.∴PC∥平面BDE.(2)解:取AD中点F,连结EF.则EF∥PD且EF=1∵PD⊥平面ABCD,∴EF⊥平面ABCD,∴EF就是三棱锥E-BCD的高.在正方形ABCD中,SΔBCD∴V三棱锥【点睛】本题考查了线面平行,三棱锥的体积,意在考查学生的空间想象能力和计算能力.21、(1);(2)【解析】
(1)由,,根据等比数列的通项公
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉首大学《电工与电子技术》2021-2022学年期末试卷
- 《机床夹具设计》试题14
- 吉林艺术学院《影视概念设计解析》2021-2022学年第一学期期末试卷
- 吉林艺术学院《视唱Ⅱ》2021-2022学年第一学期期末试卷
- 吉林艺术学院《和声Ⅱ》2021-2022学年第一学期期末试卷
- 珠海离婚协议书范文
- 2024年多方合作合同范本
- 吉林师范大学《信息动画设计》2021-2022学年第一学期期末试卷
- 2022年公务员多省联考《申论》真题(重庆二卷)及答案解析
- 女婿与女婿离婚协议书范文模板
- 优秀工作总结范文:阀门专业技术工作总结
- 按键外观及可靠性测试检验标准
- 安防监控系统室外施工安装规范标准
- 胸痛鉴别诊断
- 元明粉比重表
- 房地产估价理论与方法重要公式整理
- 房地产项目投资成本测算参考表
- 提高护士对抢救药品知晓率PDCA案例精编版
- 大学英语四级改错题12篇
- 正余弦定理知识点权威总结18页
- 浅议小升初数学教学衔接
评论
0/150
提交评论