2024届山西省吕梁市柳林县数学高一下期末学业水平测试试题含解析_第1页
2024届山西省吕梁市柳林县数学高一下期末学业水平测试试题含解析_第2页
2024届山西省吕梁市柳林县数学高一下期末学业水平测试试题含解析_第3页
2024届山西省吕梁市柳林县数学高一下期末学业水平测试试题含解析_第4页
2024届山西省吕梁市柳林县数学高一下期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省吕梁市柳林县数学高一下期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,已知三个内角为,,满足,则().A. B.C. D.2.已知向量,,,则实数的值为()A. B. C.2 D.33.若一个三角形,采用斜二测画法作出其直观图,则其直观图的面积是原三角形面积的()A.倍 B.2倍 C.倍 D.倍4.设等比数列的前项和为,且,则()A.255 B.375 C.250 D.2005.若复数(是虚数单位)是纯虚数,则实数的值为()A. B. C. D.6.已知函数在区间上有最大值,则实数的取值范围是()A. B. C. D.7.已知点在正所确定的平面上,且满足,则的面积与的面积之比为()A. B. C. D.8.在公比为2的等比数列中,,则等于()A.4 B.8 C.12 D.249.已知全集则()A. B. C. D.10.下列各命题中,假命题的是()A.“度”与“弧度”是度量角的两种不同的度量单位B.一度的角是周角的,一弧度的角是周角的C.根据弧度的定义,一定等于弧度D.不论是用角度制还是用弧度制度量角,它们都与圆的半径长短有关二、填空题:本大题共6小题,每小题5分,共30分。11.求的值为________.12.某校老年、中年和青年教师的人数分别为90,180,160,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有32人,则抽取的样本中老年教师的人数为_____13.已知,那么__________.14.据监测,在海滨某城市附近的海面有一台风,台风中心位于城市的南偏东30°方向,距离城市的海面处,并以的速度向北偏西60°方向移动(如图示).如果台风侵袭范围为圆形区域,半径,台风移动的方向与速度不变,那么该城市受台风侵袭的时长为_______小时.15.已知数列是等差数列,记数列的前项和为,若,则________.16.已知,,且,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数,且(1)求的值;(2)试判断在上的单调性,并用定义加以证明;(3)若求值域;18.已知函数(1)求函数的单调递减区间;(2)在锐角中,若角,求的值域.19.已知数列的前项和(1)求的通项公式;(2)若数列满足:,求的前项和(结果需化简)20.已知且,比较与的大小.21.设向量,,其中.(1)若,求的值;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用正弦定理、余弦定理即可得出.【详解】由正弦定理,以及,得,不妨取,则,又,.故选:C.【点睛】本题主要考查了正弦定理,余弦定理在解三角形中应用,考查了转化思想,属于基础题.2、A【解析】

将向量的坐标代入中,利用坐标相等,即可得答案.【详解】∵,∴.故选:A.【点睛】本题考查向量相等的坐标运算,考查运算求解能力,属于基础题.3、C【解析】

以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法看三角形底边长和高的变化即可.【详解】以三角形的一边为x轴,高所在的直线为y轴,由斜二测画法知,三角形的底长度不变,高所在的直线为y′轴,长度减半,故三家性的高变为原来的sin45°=,故直观图中三角形面积是原三角形面积的.故选C.【点睛】本题重点考查了斜二侧画法、平面图形的面积的求解方法等知识,属于中档题.解题关键是准确理解斜二侧画法的内涵,与x轴平行的线段长度保持不变,与y轴平行的线段的长度减少为原来的一半.4、A【解析】

由等比数列的性质,仍是等比数列,先由是等比数列求出,再由是等比数列,可得.【详解】由题得,成等比数列,则有,,解得,同理有,,解得.故选:A【点睛】本题考查等比数列前n项和的性质,这道题也可以先由求出数列的首项和公比q,再由前n项和公式直接得。5、C【解析】,且是纯虚数,,故选C.6、B【解析】因为,所以由题设在只有一个零点且单调递减,则问题转化为,即,应选答案B.点睛:解答本题的关键是如何借助题设条件建立不等式组,这是解答本题的难点,也是解答好本题的突破口,如何通过解不等式使得问题巧妙获解.7、C【解析】

根据向量满足的条件确定出P点的位置,再根据三角形有相同的底边,确定高的比即可求出结果.【详解】因为,所以,即点在边上,且,所以点到的距离等于点到距离的,故的面积与的面积之比为.选C.【点睛】本题主要考查了向量的线性运算,三角形的面积,属于中档题.8、D【解析】

由等比数列的性质可得,可求出,则答案可求解.【详解】等比数列的公比为2,由,即,所以舍所以故选:D【点睛】本题考查等比数列的性质和通项公式的应用,属于基础题.9、B【解析】

先求M的补集,再与N求交集.【详解】∵全集U={0,1,2,3,4},M={0,1,2},∴∁UM={3,4}.∵N={2,3},∴(∁UM)∩N={3}.故选:B.【点睛】本题考查了交、并、补集的混合运算,是基础题.10、D【解析】

根据弧度制的概念,逐项判断,即可得出结果.【详解】A选项,“度”与“弧度”是度量角的两种不同的度量单位,正确;B选项,一度的角是周角的,一弧度的角是周角的,正确;C选项,根据弧度的定义,一定等于弧度,正确;D选项,用角度制度量角,与圆的半径长短无关,故D错.故选:D.【点睛】本题主要考查弧度制的相关判定,熟记概念即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、44.5【解析】

通过诱导公式,得出,依此类推,得出原式的值.【详解】,,同理,,故答案为44.5.【点睛】本题主要考查了三角函数中的诱导公式的运用,得出是解题的关键,属于基础题.12、【解析】

根据分层抽样的定义建立比例关系,即可得到答案。【详解】设抽取的样本中老年教师的人数为,学校所有的中老年教师人数为270人由分层抽样的定义可知:,解得:故答案为【点睛】本题考查分层抽样,考查学生的计算能力,属于基础题。13、2017【解析】,故,由此得.【点睛】本题主要考查函数解析式的求解方法,考查等比数列前项和的计算公式.对于函数解析式的求法,有两种,一种是换元法,另一种的变换法.解析中运用的方法就是变换法,即将变换为含有的式子.也可以令.等比数列求和公式为.14、1【解析】

设台风移动M处的时间为th,则|PM|=20t,利用余弦定理求得AM,而该城市受台风侵袭等价于AM≤60,解此不等式可得.【详解】如图:设台风移动M处的时间为th,则|PM|=20t,依题意可得,在三角形APM中,由余弦定理可得:依题意该城市受台风侵袭等价于AM≤60,即AM2≤602,化简得:,所以该城市受台风侵袭的时间为6﹣1=1小时.故答案为:1.【点睛】本题考查了余弦定理的应用,考查了数学运算能力.15、1【解析】

由等差数列的求和公式和性质可得,代入已知式子可得.【详解】由等差数列的求和公式和性质可得:=,且,∴.故答案为:1.【点睛】本题考查了等差数列的求和公式及性质的应用,属于基础题.16、【解析】

根据向量平行的坐标表示可求得;代入两角和差正切公式即可求得结果.【详解】本题正确结果:【点睛】本题考查两角和差正切公式的应用,涉及到向量平行的坐标表示,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)m=1;(2)单调递减,证明见解析;(3).【解析】

(1)由由(1)即可解得;(2)利用减函数的定义可以判断、证明;(3)利用函数的单调性求函数的值域.【详解】(1)由(1),得,.(2)在上单调递减.证明:由(1)知,,设,则.因为,所以,,所以,即,所以函数在上单调递减.(3)由于函数在上单调递减.所以.所以函数的值域为.【点睛】本题考查函数的单调性及其应用,定义证明函数单调性的常用方法,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1),;(2)【解析】

(1)利用二倍角、辅助角公式化简,然后利用单调区间公式求解单调区间;(2)根据条件求解出的范围,然后再求解的值域.【详解】(1),令,解得:,所以单调减区间为:,;(2)由锐角三角形可知:,所以,则,又,所以,,则.【点睛】本题考查三角恒等变换以及三角函数值域问题,难度较易.根据三角形形状求解角范围的时候,要注意到隐含条件的使用.19、(1);(2);【解析】

(1)运用数列的递推式得时,,时,,化简计算可得所求通项公式;(2)求得,运用数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.【详解】(1)可得时,则(2)数列满足,可得,即,前项和两式相减可得化简可得【点睛】本题考查数列的递推式的运用,考查数列的错位相减法求和,以及等比数列的求和公式,考查运算能力,属于中档题.20、详见解析【解析】

将两式作差可得,由、和可得大小关系.【详解】当且时,当时,当时,综上所述:当时,;当时,;当时,【点睛】本题考查作差法比较大小的问题,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论