2024届黑龙江省齐齐哈尔市高三下学期二模考试数学试题(解析版)_第1页
2024届黑龙江省齐齐哈尔市高三下学期二模考试数学试题(解析版)_第2页
2024届黑龙江省齐齐哈尔市高三下学期二模考试数学试题(解析版)_第3页
2024届黑龙江省齐齐哈尔市高三下学期二模考试数学试题(解析版)_第4页
2024届黑龙江省齐齐哈尔市高三下学期二模考试数学试题(解析版)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高级中学名校试卷PAGEPAGE3黑龙江省齐齐哈尔市2024届高三下学期二模考试数学试题一、选择题1.已知为整数集,,则()A. B. C. D.〖答案〗D〖解析〗因为.故选:D.2.若,则()A. B.1 C.2 D.4〖答案〗A〖解析〗,.故选:A.3.样本数据16,20,21,24,22,14,18,28的分位数为()A.16 B.17 C.23 D.24〖答案〗C〖解析〗由小到大排列为14,16,18,20,21,22,24,28,一共有8个数据,,所以分位数为.故选:C.4.在中,,,则()A. B. C. D.〖答案〗D〖解析〗由正弦定理可得,,又,所以,不妨设,所以由余弦定理得.故选:D.5.是一种由60个碳原子构成的分子,形似足球,又名足球烯,其分子结构由12个正五边形和20个正六边形组成.如图,将足球烯上的一个正六边形和相邻正五边形展开放平,若正多边形的边长为1,为正多边形的顶点,则()A.1 B.2 C.3 D.4〖答案〗B〖解析〗如图所示,连接,,由对称性可知,,取的中点,则,,又因为正六边形的边长为1,所以,所以,故选:B.6.早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若,则的最小值为()A. B. C. D.〖答案〗D〖解析〗不妨设,,则,,所以,当且仅当时取等号,即,当且仅当时取等号,所以,()所以当时,取得最小值,故选:D.7.已知函数的最小值为,则的最小值为()A B. C.0 D.1〖答案〗B〖解析〗因为,令,则,当时,,单调递减,当时,,单调递增,,,故选:B.8.数列满足,若,则()A. B. C. D.〖答案〗A〖解析〗,,,,所以,同理可得,,.,因为,所以,则,因为,所以,故选:A.二、选择题9.已知函数,则()A.为偶函数B.曲线的对称中心为C.在区间上单调递减D.在区间上有一条对称轴〖答案〗BD〖解析〗由题意可得:,对于选项A:因为,所以为奇函数,故A错误;对于选项B:令,解得,所以曲线的对称中心为,,故B选项正确;对于选项C:因为,即,即在内不是单调递减,故C错误;对于选项D:因为,则,且在内有且仅有一条对称轴,所以在区间上有且仅有一条对称轴,故D选项正确;故选:BD.10.已知为坐标原点,抛物线的焦点在直线上,且交于两点,为上异于的一点,则()A. B.C. D.有且仅有3个点,使得的面积为〖答案〗ACD〖解析〗因为抛物线的焦点在直线上,故代入得,所以,A选项正确;设,将抛物线与直线联立,得,即.所以由韦达定理得,,,B选项错误;由直线的斜率为,知其倾斜角为,故,所以,C选项正确;设的坐标为,到直线的距离为,则的面积.从而的面积为当且仅当.另一方面,直线的方程是,由点到直线的距离公式,知到直线的距离.所以当且仅当,即.而我们有.故满足条件恰有三个:.所以有且仅有3个点,使得的面积为,D选项正确.故选:ACD.11.已知函数的定义域为,设为的导函数,,,,则()A. B.C.是奇函数 D.〖答案〗ABD〖解析〗函数,对任意,,对于A,令,得,而,则,A正确;对于B,令,得,则,两边求导得,,即,因此关于对称,,B正确;对于C,由,得,令,得,两边求导得,即,因此,函数是偶函数,C错误;对于D,由,得,则,因此函数的周期为4,,D正确.故选:ABD.三、填空题12.已知为坐标原点,,为圆上一点且在第一象限,,则直线的方程为______.〖答案〗〖解析〗根据题意,作图如下:易知点在圆上,由可知,,所以,又因为,所以,则直线斜率,故直线的方程为.故〖答案〗为:.13.某工厂为学校运动会定制奖杯,奖杯的剖面图形如图所示,已知奖杯的底座是由金属片围成的空心圆台,圆台上下底面半径分别为1,2,将一个表面积为的水晶球放置于圆台底座上,即得该奖杯,已知空心圆台(厚度不计)围成的体积为,则该奖杯的高(即水晶球最高点到圆台下底面的距离)为______.〖答案〗〖解析〗如图所示,设水晶球的半径为,则,解得,设圆台的高为,则,解得,又因为水晶球球心到圆台上底面的距离,所以该奖杯的高为.故〖答案〗为:.14.设为双曲线的一个实轴顶点,为的渐近线上的两点,满足,,则的渐近线方程是______.〖答案〗〖解析〗根据题意,作图如下:依题意,为的角平分线,且,设,由角平分线定理可得:,则;在中,由余弦定理;中,由余弦定理可得,,即,解得.故,,所以的渐近线方程是.故〖答案〗为:.四、解答题15.已知不透明的袋子中装有6个大小质地完全相同的小球,其中2个白球,4个黑球,从中无放回地随机取球,每次取一个.(1)求前两次取出的球颜色不同的概率;(2)当白球被全部取出时,停止取球,记取球次数为随机变量,求的分布列以及数学期望.解:(1)设事件为“前两次取出的球颜色不同”.设事件为“第一次取出了黑球,第二次取出了白球”,则,事件为“第一次取出了白球,第二次取出了黑球”,则,因为事件与不能同时发生,故它们互斥.所以,所以前两次取出的球颜色不同的概率为;(2)依题意,的取值为2,3,4,5,6,若第二次取出了全部白球,则只有两种取法(取决于2个白球取出的先后顺序),故,若第三次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有2种可能,取出的那个黑球有4种可能,故.若第四次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有3种可能,取出的另外2个黑球有种组合,它们又有2种排列方式,故,若第五次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有4种可能,取出的另外3个黑球有种组合,它们又有种排列方式,故,若第六次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有5种可能,取出的另外4个黑球只有1种组合,它们有种排列方式,故.所以的分布列为23456所以数学期望.16.如图,在四棱锥中,平面,,,是等边三角形,为的中点.(1)证明:平面;(2)若,求平面与平面夹角的余弦值.(1)证明:由于是等边三角形,为的中点.故是等边的中线,所以,又因为平面,在平面内,所以,由于和在平面内,且交于点,,,所以平面;(2)解:取的中点,连接,则由是的中点,知是三角形的中位线,故平行于.因为平面,平行于,所以垂直于平面,即三线两两垂直.以为坐标原点,的方向分别为轴的正方向,建立如图所示的空间直角坐标系,

则由,,,,,知,,,所以,.设平面的法向量为,则,即,令,则,,故.显然平面的一个法向量为.而,故平面与平面夹角的余弦值为.17.设数列的前项和为.(1)求数列的通项公式;(2)在数列的和项之间插入个数,使得这个数成等差数列,其中,将所有插入的数组成新数列,设为数列的前项和,求.解:(1)当时,,所以,当时,,即,所以,当时,符合,所以;(2)依题意,,,,︙.所以,即,①则,②由①②可得,,所以.18.已知函数.(1)当时,求曲线在点处的切线方程;(2)当时,证明:.(1)解:当时,,则,又,所以,即,所以在点处的切线方程为,即;(2)证明:设(),则,,设,则,当时,,单调递减,当时,,单调递增,,恒成立,由可知,所以(),设(),则,,所以当时,,单调递增,,所以单调递增,,所以.19.已知椭圆的左顶点为,过且斜率为的直线交轴于点,交的另一点为.(1)若,求的离心率;(2)点在上,若,且,求的取值范围.解:(1)如图所示,由题意知,,设,由,可知,代入椭圆方程,可得,因为,所以,又,解得,所以离心率;(2)如图所示,设点,直线方程为,联立直线方程与椭圆方程可得,整理可得,解得,所以,将替换为,同理可得,,由,可得,整理得,由,解得或,,即,解得或,故解集为.综上所述,的取值范围为.黑龙江省齐齐哈尔市2024届高三下学期二模考试数学试题一、选择题1.已知为整数集,,则()A. B. C. D.〖答案〗D〖解析〗因为.故选:D.2.若,则()A. B.1 C.2 D.4〖答案〗A〖解析〗,.故选:A.3.样本数据16,20,21,24,22,14,18,28的分位数为()A.16 B.17 C.23 D.24〖答案〗C〖解析〗由小到大排列为14,16,18,20,21,22,24,28,一共有8个数据,,所以分位数为.故选:C.4.在中,,,则()A. B. C. D.〖答案〗D〖解析〗由正弦定理可得,,又,所以,不妨设,所以由余弦定理得.故选:D.5.是一种由60个碳原子构成的分子,形似足球,又名足球烯,其分子结构由12个正五边形和20个正六边形组成.如图,将足球烯上的一个正六边形和相邻正五边形展开放平,若正多边形的边长为1,为正多边形的顶点,则()A.1 B.2 C.3 D.4〖答案〗B〖解析〗如图所示,连接,,由对称性可知,,取的中点,则,,又因为正六边形的边长为1,所以,所以,故选:B.6.早在西元前6世纪,毕达哥拉斯学派已经知道算术中项,几何中项以及调和中项,毕达哥拉斯学派哲学家阿契塔在《论音乐》中定义了上述三类中项,其中算术中项,几何中项的定义与今天大致相同.若,则的最小值为()A. B. C. D.〖答案〗D〖解析〗不妨设,,则,,所以,当且仅当时取等号,即,当且仅当时取等号,所以,()所以当时,取得最小值,故选:D.7.已知函数的最小值为,则的最小值为()A B. C.0 D.1〖答案〗B〖解析〗因为,令,则,当时,,单调递减,当时,,单调递增,,,故选:B.8.数列满足,若,则()A. B. C. D.〖答案〗A〖解析〗,,,,所以,同理可得,,.,因为,所以,则,因为,所以,故选:A.二、选择题9.已知函数,则()A.为偶函数B.曲线的对称中心为C.在区间上单调递减D.在区间上有一条对称轴〖答案〗BD〖解析〗由题意可得:,对于选项A:因为,所以为奇函数,故A错误;对于选项B:令,解得,所以曲线的对称中心为,,故B选项正确;对于选项C:因为,即,即在内不是单调递减,故C错误;对于选项D:因为,则,且在内有且仅有一条对称轴,所以在区间上有且仅有一条对称轴,故D选项正确;故选:BD.10.已知为坐标原点,抛物线的焦点在直线上,且交于两点,为上异于的一点,则()A. B.C. D.有且仅有3个点,使得的面积为〖答案〗ACD〖解析〗因为抛物线的焦点在直线上,故代入得,所以,A选项正确;设,将抛物线与直线联立,得,即.所以由韦达定理得,,,B选项错误;由直线的斜率为,知其倾斜角为,故,所以,C选项正确;设的坐标为,到直线的距离为,则的面积.从而的面积为当且仅当.另一方面,直线的方程是,由点到直线的距离公式,知到直线的距离.所以当且仅当,即.而我们有.故满足条件恰有三个:.所以有且仅有3个点,使得的面积为,D选项正确.故选:ACD.11.已知函数的定义域为,设为的导函数,,,,则()A. B.C.是奇函数 D.〖答案〗ABD〖解析〗函数,对任意,,对于A,令,得,而,则,A正确;对于B,令,得,则,两边求导得,,即,因此关于对称,,B正确;对于C,由,得,令,得,两边求导得,即,因此,函数是偶函数,C错误;对于D,由,得,则,因此函数的周期为4,,D正确.故选:ABD.三、填空题12.已知为坐标原点,,为圆上一点且在第一象限,,则直线的方程为______.〖答案〗〖解析〗根据题意,作图如下:易知点在圆上,由可知,,所以,又因为,所以,则直线斜率,故直线的方程为.故〖答案〗为:.13.某工厂为学校运动会定制奖杯,奖杯的剖面图形如图所示,已知奖杯的底座是由金属片围成的空心圆台,圆台上下底面半径分别为1,2,将一个表面积为的水晶球放置于圆台底座上,即得该奖杯,已知空心圆台(厚度不计)围成的体积为,则该奖杯的高(即水晶球最高点到圆台下底面的距离)为______.〖答案〗〖解析〗如图所示,设水晶球的半径为,则,解得,设圆台的高为,则,解得,又因为水晶球球心到圆台上底面的距离,所以该奖杯的高为.故〖答案〗为:.14.设为双曲线的一个实轴顶点,为的渐近线上的两点,满足,,则的渐近线方程是______.〖答案〗〖解析〗根据题意,作图如下:依题意,为的角平分线,且,设,由角平分线定理可得:,则;在中,由余弦定理;中,由余弦定理可得,,即,解得.故,,所以的渐近线方程是.故〖答案〗为:.四、解答题15.已知不透明的袋子中装有6个大小质地完全相同的小球,其中2个白球,4个黑球,从中无放回地随机取球,每次取一个.(1)求前两次取出的球颜色不同的概率;(2)当白球被全部取出时,停止取球,记取球次数为随机变量,求的分布列以及数学期望.解:(1)设事件为“前两次取出的球颜色不同”.设事件为“第一次取出了黑球,第二次取出了白球”,则,事件为“第一次取出了白球,第二次取出了黑球”,则,因为事件与不能同时发生,故它们互斥.所以,所以前两次取出的球颜色不同的概率为;(2)依题意,的取值为2,3,4,5,6,若第二次取出了全部白球,则只有两种取法(取决于2个白球取出的先后顺序),故,若第三次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有2种可能,取出的那个黑球有4种可能,故.若第四次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有3种可能,取出的另外2个黑球有种组合,它们又有2种排列方式,故,若第五次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有4种可能,取出的另外3个黑球有种组合,它们又有种排列方式,故,若第六次取出了最后一个白球,则最后取出的白球有2种可能,另一个白球的位置有5种可能,取出的另外4个黑球只有1种组合,它们有种排列方式,故.所以的分布列为23456所以数学期望.16.如图,在四棱锥中,平面,,,是等边三角形,为的中点.(1)证明:平面;(2)若,求平面与平面夹角的余弦值.(1)证明:由于是等边三角形,为的中点.故是等边的中线,所以,又因为平面,在平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论