版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页§7.1条件概率与全概率公式7.1.1条件概率学习目标1.结合古典概型,了解条件概率的定义.2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.知识点一条件概率的概念一般地,设A,B为两个随机事件,且P(A)>0,我们称P(B|A)=eq\f(PAB,PA)为在事件A发生的条件下,事件B发生的条件概率.思考P(A|B),P(B),P(AB)间存在怎样的等量关系?答案P(A|B)=eq\f(PAB,PB),其中P(B)>0.知识点二概率乘法公式对任意两个事件A与B,若P(A)>0,则P(AB)=P(A)P(B|A)为概率的乘法公式.知识点三条件概率的性质设P(A)>0,则(1)P(Ω|A)=1.(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).(3)设eq\x\to(B)和B互为对立事件,则P(eq\x\to(B)|A)=1-P(B|A).1.在“A已发生”的条件下,B发生的概率可记作P(A|B).(×)2.对事件A,B,有P(B|A)=P(A|B).(×)3.若P(B|A)=P(B),则事件A,B相互独立.(√)4.P(B|A)相当于事件A发生的条件下,事件AB发生的概率.(√)一、条件概率的定义及计算命题角度1利用定义求条件概率例1现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.反思感悟利用定义计算条件概率的步骤(1)分别计算概率P(AB)和P(A).(2)将它们相除得到条件概率P(B|A)=eq\f(PAB,PA),这个公式适用于一般情形,其中AB表示A,B同时发生.跟踪训练1从混有5张假钞的20张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,求两张都是假钞的概率.命题角度2缩小样本空间求条件概率例2集合A={1,2,3,4,5,6},甲、乙两人各从A中任取一个数,若甲先取(不放回),乙后取,在甲抽到奇数的条件下,求乙抽到的数比甲抽到的数大的概率.延伸探究1.在本例条件下,求乙抽到偶数的概率.解在甲抽到奇数的情形中,乙抽到偶数的情形有(1,2),(1,4),(1,6),(3,2),(3,4),(3,6),(5,2),(5,4),(5,6),共9个,所以所求概率P=eq\f(9,15)=eq\f(3,5).2.若甲先取(放回),乙后取,若事件A:“甲抽到的数大于4”;事件B:“甲、乙抽到的两数之和等于7”,求P(B|A).解甲抽到的数大于4的情形有:(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共12个,其中甲、乙抽到的两数之和等于7的情形有:(5,2),(6,1),共2个.所以P(B|A)=eq\f(2,12)=eq\f(1,6).反思感悟利用缩小样本空间法求条件概率的方法(1)缩:将原来的基本事件全体Ω缩小为事件A,原来的事件B缩小为AB.(2)数:数出A中事件AB所包含的基本事件.(3)算:利用P(B|A)=eq\f(nAB,nA)求得结果.跟踪训练2抛掷红、蓝两颗骰子,记事件A为“蓝色骰子的点数为4或6”,事件B为“两颗骰子的点数之和大于8”,求:(1)事件A发生的条件下事件B发生的概率;(2)事件B发生的条件下事件A发生的概率.二、概率的乘法公式例3一个盒子中有6只白球、4只黑球,从中不放回地每次任取1只,连取2次.求:(1)第一次取得白球的概率;(2)第一、第二次都取得白球的概率;(3)第一次取得黑球而第二次取得白球的概率.反思感悟概率的乘法公式(1)公式P(AB)=P(A)P(B|A)反映了知二求一的方程思想.(2)该概率公式可以推广P(A1A2A3)=P(A1)P(A2|A1)·P(A3|A1A2),其中P(A1)>0,P(A1A2)>0.跟踪训练3已知某品牌的手机从1m高的地方掉落时,屏幕第一次未碎掉的概率为0.5,当第一次未碎掉时第二次也未碎掉的概率为0.3,试求这样的手机从1m高的地方掉落两次后屏幕仍未碎掉的概率.三、条件概率的性质及应用例4在某次考试中,要从20道题中随机抽出6道题,若考生至少能答对其中4道题即可通过,至少能答对其中5道题就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.反思感悟条件概率的性质及应用(1)利用公式P(B∪C|A)=P(B|A)+P(C|A)可使条件概率的计算较为简单,但应注意这个性质的使用前提是“B与C互斥”.(2)为了求复杂事件的概率,往往需要把该事件分为两个或多个互斥事件,求出简单事件的概率后,相加即可得到复杂事件的概率.跟踪训练4有五瓶墨水,其中红色一瓶,蓝色、黑色各两瓶,某同学从中随机任取两瓶,若取得的两瓶中有一瓶是蓝色,则另一瓶是红色或黑色的概率为________.1.设A,B为两个事件,且P(A)>0,若P(AB)=eq\f(1,3),P(A)=eq\f(2,3),则P(B|A)等于()A.eq\f(1,2)B.eq\f(2,9)C.eq\f(1,9)D.eq\f(4,9)2.市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到的一个甲厂的合格灯泡的概率是()A.0.665B.0.564C.0.245D.0.2853.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天的空气质量为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8B.0.75C.0.6D.0.454.投掷两颗均匀的骰子,已知点数不同,设两颗骰子点数之和小于等于6的概率为________.5.某气象台统计,该地区下雨的概率为eq\f(4,15),既刮四级以上的风又下雨的概率为eq\f(1,10).设事件A为该地区下雨,事件B为该地区刮四级以上的风,则P(B|A)=________.1.知识清单:(1)条件概率:P(B|A)=eq\f(PAB,PA)=eq\f(nAB,nA).(2)概率乘法公式:P(AB)=P(A)P(B|A)=P(B)·P(A|B).(3)条件概率的性质.2.方法归纳:转化化归、对立统一.3.常见误区:分不清“在谁的条件下”,求“谁的概率”.1.已知P(B|A)=eq\f(1,3),P(A)=eq\f(2,5),则P(AB)等于()A.eq\f(5,6)B.eq\f(9,10)C.eq\f(2,15)D.eq\f(1,15)2.(多选)设P(A|B)=P(B|A)=eq\f(1,2),P(A)=eq\f(1,3),则()A.P(AB)=eq\f(1,6) B.P(AB)=eq\f(5,6)C.P(B)=eq\f(1,3) D.P(B)=eq\f(1,12)3.某人忘记了一个电话号码的最后一个数字,只好去试拨,他第一次失败、第二次成功的概率是()A.eq\f(1,10)B.eq\f(2,10)C.eq\f(8,10)D.eq\f(9,10)4.某班学生考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%.已知一学生数学不及格,则他语文也不及格的概率是()A.0.2B.0.33C.0.5D.0.65.将两枚质地均匀的骰子各掷一次,设事件A=“两个点数互不相同”,B=“出现一个5点”,则P(B|A)等于()A.eq\f(1,3)B.eq\f(5,18)C.eq\f(1,6)D.eq\f(1,4)6.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是________,两次都取到白球的概率是________.7.设某种动物由出生算起活到20岁的概率为0.8,活到25岁的概率0.4,现有一个20岁的这种动物,则它能活到25岁的概率是________.8.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率是________.9.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一人作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率.10.设b和c分别是抛掷一枚骰子先后得到的点数.(1)求方程x2+bx+c=0有实根的概率;(2)求在先后两次出现的点数中有5的条件下,方程x2+bx+c=0有实根的概率.11.7名同学从左向右站成一排,已知甲站在中间,则乙站在最右端的概率是()A.eq\f(1,4)B.eq\f(1,5)C.eq\f(1,6)D.eq\f(1,7)12.已知某产品的次品率为4%,其合格品中75%为一级品,则任选一件为一级品的概率为()A.75%B.96%C.72%D.78.125%13.一个盒子里有6支好晶体管,4支坏晶体管,任取两次,每次取1支,每次取后不放回,已知第一支是好晶体管,则第二支也是好晶体管的概率为()A.eq\f(2,3)B.eq\f(5,12)C.eq\f(5,9)D.eq\f(7,9)14.某项射击游戏规定:选手先后对两个目标进行射击,只有两个目标都射中才能过关.某选手射中第一个目标的概率为0.8,继续射击,射中第二个目标的概率为0.5,则这个选手过关的概率为________.15.从1~100共100个正整数中任取一数,已知取出的一个数不大于50,则此数是2或3的倍数的概率为________.16.如图,三行三列的方阵有9个数aij(i=1,2,3,j=1,2,3),从中任取三个数,已知取到a22的条件下,求至少有两个数位于同行或同列的概率.eq\b\lc\(\rc\)(\a\vs4\al\co1(a11a12a13,a21a22a23,a31a32a33))7.1.2全概率公式学习目标1.结合古典概型,会利用全概率公式计算概率.2.了解贝叶斯公式(不作考试要求).知识点一全概率公式一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=eq\i\su(i=1,n,P)(Ai)P(B|Ai),我们称该公式为全概率公式.*知识点二贝叶斯公式设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,P(B)>0,有P(Ai|B)=eq\f(PAiPB|Ai,PB)=eq\f(PAiPB|Ai,\i\su(k=1,n,P)AkPB|Ak),i=1,2,…,n.1.若P(A)>0,P(eq\x\to(A))>0,则P(B)=P(A)P(B|A)+P(eq\x\to(A))P(B|eq\x\to(A)).(√)2.若A1,A2,A3互斥且P(A1)>0,P(A2)>0,P(A3)>0,则P(B)=eq\i\su(i=1,3,P)(Ai)P(B|Ai).(×)一、两个事件的全概率问题例1某次社会实践活动中,甲、乙两个班的同学共同在一个社区进行民意调查.参加活动的甲、乙两班的人数之比为5∶3,其中甲班中女生占eq\f(3,5),乙班中女生占eq\f(1,3).求该社区居民遇到一位进行民意调查的同学恰好是女生的概率.反思感悟两个事件的全概率问题求解策略(1)拆分:将样本空间拆分成互斥的两部分如A1,A2(或A与eq\x\to(A)).(2)计算:利用乘法公式计算每一部分的概率.(3)求和:所求事件的概率P(B)=P(A1)P(B|A1)+P(A2)P(B|A2).跟踪训练1某商店收进甲厂生产的产品30箱,乙厂生产的同种产品20箱,甲厂每箱装100个,废品率为0.06,乙厂每箱装120个,废品率为0.05,求:(1)任取一箱,从中任取一个为废品的概率;(2)若将所有产品开箱混放,求任取一个为废品的概率.二、多个事件的全概率问题例2假设某市场供应的智能手机中,市场占有率和优质率的信息如下表所示:品牌甲乙其他市场占有率50%30%20%优质率95%90%70%在该市场中任意买一部智能手机,求买到的是优质品的概率.反思感悟“化整为零”求多事件的全概率问题(1)如图,P(B)=eq\i\su(i=1,3,P)(Ai)P(B|Ai).(2)已知事件B的发生有各种可能的情形Ai(i=1,2,…,n),事件B发生的可能性,就是各种可能情形Ai发生的可能性与已知在Ai发生的条件下事件B发生的可能性的乘积之和.跟踪训练2甲箱的产品中有5个正品和3个次品,乙箱的产品中有4个正品和3个次品.(1)从甲箱中任取2个产品,求这2个产品都是次品的概率;(2)若从甲箱中任取2个产品放入乙箱中,然后再从乙箱中任取一个产品,求取出的这个产品是正品的概率.三、条件概率在生产生活中的应用例3设某批产品中,甲、乙、丙三厂生产的产品分别占45%,35%,20%,各厂的产品的次品率分别为4%,2%,5%,现从中任取一件.(1)求取到的是次品的概率;(2)经检验发现取到的产品为次品,求该产品是甲厂生产的概率.反思感悟条件概率的内含(1)公式P(A1|B)=eq\f(PA1B,PB)=eq\f(PA1PB|A1,PB)反映了P(A1B),P(A1),P(B),P(A1|B),P(B|A1)之间的互化关系.(2)P(A1)称为先验概率,P(A1|B)称为后验概率,其反映了事情A1发生的可能在各种可能原因中的比重.跟踪训练3同一种产品由甲、乙、丙三个厂供应.由长期的经验知,三家的正品率分别为0.95,0.90,0.80,三家产品数所占比例为2∶3∶5,混合在一起.(1)从中任取一件,求此产品为正品的概率;(2)现取到一件产品为正品,问它是由甲、乙、丙三个厂中哪个厂生产的可能性大?1.一袋中装有10个球,其中3个黑球、7个白球,从中先后随意各取一球(不放回),则第二次取到的是黑球的概率为()A.eq\f(2,9)B.eq\f(3,9)C.eq\f(3,10)D.eq\f(7,10)2.两台车床加工同样的零件,第一台出现废品的概率为0.03,第二台出现废品的概率为0.02,加工出来的零件放在一起,现已知第一台加工的零件比第二台加工的零件多一倍,则任意取出一个零件是合格品的概率是()A.eq\f(2,75)B.eq\f(7,300)C.eq\f(73,75)D.eq\f(973,1000)3.有一批同一型号的产品,已知其中由一厂生产的占30%,二厂生产的占50%,三厂生产的占20%.又知这三个厂的产品次品率分别为2%,1%,1%,则从这批产品中任取一件是次品的概率是()A.0.013B.0.04C.0.002D.0.0034.甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,则该球是白球的概率为________.5.一项血液化验用来鉴别是否患有某种疾病,在患有此种疾病的人群中通过化验有95%的人呈阳性反应,而健康的人通过化验也会有1%的人呈阳性反应,某地区此种病患者占人口数的0.5%,则:(1)某人化验结果为阳性的概率为________;(2)若此人化验结果为阳性,则此人确实患有此病的概率为________.1.知识清单:(1)全概率公式.(2)贝叶斯公式.2.方法归纳:化整为零、转化化归.3.常见误区:事件拆分不合理或不全面.1.有朋自远方来,乘火车、船、汽车、飞机来的概率分别为0.3,0.2,0.1,0.4,迟到的概率分别为0.25,0.3,0.1,0,则他迟到的概率为()A.0.85B.0.65C.0.145D.0.0752.播种用的一等小麦种子中混有2%的二等种子,1.5%的三等种子,1%的四等种子.用一、二、三、四等种子长出的穗含50颗以上麦粒的概率分别为0.5,0.15,0.1,0.05,则这批种子所结的穗含50颗以上麦粒的概率为()A.0.8B.0.532C.0.4825D.0.31253.已知5%的男人和0.25%的女人患色盲,假如男人、女人各占一半,现随机选一人,则此人恰是色盲的概率是()A.0.01245B.0.05786C.0.02625D.0.028654.设有来自三个地区的各10名,15名和25名考生的报名表,其中女生报名表分别为3份、7份和5份,随机地取一个地区的报名表,从中先后取出两份,则先取到的一份为女生表的概率为()A.eq\f(3,10)B.eq\f(21,100)C.eq\f(7,30)D.eq\f(29,90)5.把外形相同的球分装在三个盒子中,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A的球,则在第二个盒子中任取一个球;若第一次取得标有字母B的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验成功,则试验成功的概率为()A.0.59B.0.41C.0.48D.0.646.袋中装有编号为1,2,…,N的N个球,先从袋中任取一球,如该球不是1号球就放回袋中,是1号球就不放回,然后再摸一次,则取到2号球的概率为________.7.人们为了解一支股票未来一定时期内价格的变化,往往会去分析影响股票价格的基本因素,比如利率的变化.现假设人们经分析估计利率下调的概率为60%,利率不变的概率为40%.根据经验,人们估计,在利率下调的情况下,该支股票价格上涨的概率为80%,而在利率不变的情况下,其价格上涨的概率为40%,则该支股票将上涨的概率为________.8.设盒中装有5只灯泡,其中3只是好的,2只是坏的,现从盒中随机地摸出两只,并换进2只好的之后,再从盒中摸出2只,则第二次摸出的2只全是好的概率为________.9.1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,问:(1)从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是多少?(2)从2号箱取出红球的概率是多少?10.设甲、乙、丙三个地区爆发了某种流行病,三个地区感染此病的比例分别为eq\f(1,7),eq\f(1,5),eq\f(1,4).现从这三个地区任选一个地区抽取一个人.(1)求此人感染此病的概率;(2)若此人感染此病,求此人来自乙地区的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《创新教学与》课件
- 设计工程质量保障措施(3篇)
- 学校与外国学校交流协议书(2篇)
- 观迎南农大各位同学参加茂施公司的校园招聘宣讲会课件
- 2023年河南省信阳市公开招聘警务辅助人员(辅警)笔试模拟自测题(B)卷含答案
- 2021年河南省鹤壁市公开招聘警务辅助人员(辅警)笔试冲刺自测题一卷含答案
- 2024年浙江省湖州市公开招聘警务辅助人员(辅警)笔试高频必刷题试卷含答案
- 2024年XX系统性能优化服务合同2篇
- 《电子控制悬架系统》课件
- 2024年标准劳动协议模板一
- 超声波清洗机验证方案
- 《孙子兵法》与执政艺术学习通超星课后章节答案期末考试题库2023年
- 初中英语- It's important to get enough sleep.2a教学课件设计
- 2023年四川省公需科目(数字经济与驱动发展)考试题库及答案
- 安徽泰亨特科技有限公司年产25000吨四氢噻吩产品建设项目环境影响报告书
- 有坎宽顶堰流量系数侧收缩系数淹没系数确定
- 乔治华盛顿介绍George Washington
- 智慧教育环境下基于微能力点应用的高中英语教学研究-以一节高中英语听说课教学案例为例
- 立定跳远运动解剖分析专家讲座
- 建设项目环境影响报告表56
- 小品搞笑大全剧本完整-搞笑小品剧本:《四大才子》
评论
0/150
提交评论