版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省烟台市名校2024届中考联考数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若在同一直角坐标系中,正比例函数y=k1x与反比例函数y=的图象无交点,则有()A.k1+k2>0 B.k1+k2<0 C.k1k2>0 D.k1k2<02.在下列交通标志中,是中心对称图形的是()A. B.C. D.3.某射手在同一条件下进行射击,结果如下表所示:射击次数(n)102050100200500……击中靶心次数(m)8194492178451……击中靶心频率(mn0.800.950.880.920.890.90……由此表推断这个射手射击1次,击中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.94.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为()A.5元,2元 B.2元,5元C.4.5元,1.5元 D.5.5元,2.5元5.3的相反数是()A.﹣3 B.3 C. D.﹣6.下列调查中适宜采用抽样方式的是()A.了解某班每个学生家庭用电数量B.调查你所在学校数学教师的年龄状况C.调查神舟飞船各零件的质量D.调查一批显像管的使用寿命7.已知:如图,点P是正方形ABCD的对角线AC上的一个动点(A、C除外),作PE⊥AB于点E,作PF⊥BC于点F,设正方形ABCD的边长为x,矩形PEBF的周长为y,在下列图象中,大致表示y与x之间的函数关系的是()A. B. C. D.8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A. B. C. D.9.如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A. B. C. D.10.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是(
)A.a
B.b
C. D.11.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE12.函数y=中,x的取值范围是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,cos∠AMC,则tan∠B的值为__________.14.一个三角形的两边长分别为3和6,第三边长是方程x2-10x+21=0的根,则三角形的周长为______________.15.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为_____.16.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,DE平分∠BDC交BC于点E,则=.17.如图,等腰△ABC中,AB=AC=5,BC=8,点F是边BC上不与点B,C重合的一个动点,直线DE垂直平分BF,垂足为D.当△ACF是直角三角形时,BD的长为_____.18.函数y=中自变量x的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)求扇形统计图中C所对圆心角的度数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.20.(6分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.21.(6分)(1)解不等式组:;(2)解方程:.22.(8分)如图,抛物线(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.23.(8分)先化简,再求值:,其中的值从不等式组的整数解中选取.24.(10分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当时,请猜想的值(请直接写出结论).25.(10分)如图,在正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边上的动点,且AE=BF=CG=DH.(1)求证:△AEH≌△CGF;(2)在点E、F、G、H运动过程中,判断直线EG是否经过某一个定点,如果是,请证明你的结论;如果不是,请说明理由26.(12分)计算:;解方程:27.(12分)一天晚上,李明利用灯光下的影子长来测量一路灯D的高度.如图,当在点A处放置标杆时,李明测得直立的标杆高AM与影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处放置同一个标杆,测得直立标杆高BN的影子恰好是线段AB,并测得AB=1.2m,已知标杆直立时的高为1.8m,求路灯的高CD的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】当k1,k2同号时,正比例函数y=k1x与反比例函数y=的图象有交点;当k1,k2异号时,正比例函数y=k1x与反比例函数y=的图象无交点,即可得当k1k2<0时,正比例函数y=k1x与反比例函数y=的图象无交点,故选D.2、C【解析】
解:A图形不是中心对称图形;B不是中心对称图形;C是中心对称图形,也是轴对称图形;D是轴对称图形;不是中心对称图形故选C3、D【解析】
观察表格的数据可以得到击中靶心的频率,然后用频率估计概率即可求解.【详解】依题意得击中靶心频率为0.90,估计这名射手射击一次,击中靶心的概率约为0.90.故选:D.【点睛】此题主要考查了利用频率估计概率,首先通过实验得到事件的频率,然后用频率估计概率即可解决问题.4、A【解析】
可设1本笔记本的单价为x元,1支笔的单价为y元,由题意可得等量关系:①3本笔记本的费用+2支笔的费用=19元,②1本笔记本的费用﹣1支笔的费用=3元,根据等量关系列出方程组,再求解即可.【详解】设1本笔记本的单价为x元,1支笔的单价为y元,依题意有:,解得:.故1本笔记本的单价为5元,1支笔的单价为2元.故选A.【点睛】本题考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系设出未知数,列出方程组.5、A【解析】试题分析:根据相反数的概念知:1的相反数是﹣1.故选A.【考点】相反数.6、D【解析】
根据全面调查与抽样调查的特点对各选项进行判断.【详解】解:了解某班每个学生家庭用电数量可采用全面调查;调查你所在学校数学教师的年龄状况可采用全面调查;调查神舟飞船各零件的质量要采用全面调查;而调查一批显像管的使用寿命要采用抽样调查.故选:D.【点睛】本题考查了全面调查与抽样调查:全面调查与抽样调查的优缺点:全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.7、A【解析】由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选A.8、D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.9、C【解析】分析:细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.详解:从左边看竖直叠放2个正方形.故选:C.点睛:此题考查了几何体的三种视图和学生的空间想象能力,左视图是从物体左面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.10、D【解析】
∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴<a<b<,故选D.11、B【解析】
先证明四边形DBCE为平行四边形,再根据矩形的判定进行解答.【详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;B、∵对角线互相垂直的平行四边形为菱形,不一定为矩形,故本选项正确;C、∵∠ADB=90°,∴∠EDB=90°,∴▱DBCE为矩形,故本选项错误;D、∵CE⊥DE,∴∠CED=90°,∴▱DBCE为矩形,故本选项错误,故选B.【点睛】本题考查了平行四边形的性质与判定,矩形的判定等,熟练掌握相关的判定定理与性质定理是解题的关键.12、D【解析】试题分析:由分式有意义的条件得出x+1≠0,解得x≠﹣1.故选D.点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】
根据cos∠AMC,设,,由勾股定理求出AC的长度,根据中线表达出BC即可求解.【详解】解:∵cos∠AMC,,设,,∴在Rt△ACM中,∵AM是BC边上的中线,∴BM=MC=3x,∴BC=6x,∴在Rt△ABC中,,故答案为:.【点睛】本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.14、2【解析】分析:首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.详解:解方程x2-10x+21=0得x1=3、x2=1,∵3<第三边的边长<9,∴第三边的边长为1.∴这个三角形的周长是3+6+1=2.故答案为2.点睛:本题考查了解一元二次方程和三角形的三边关系.已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和.15、60°【解析】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的两个锐角互余),∴∠A=∠D=60°(同弧所对的圆周角相等);故答案是:60°16、3-【解析】试题分析:因为△ABC中,AB=AC,∠A=36°所以∠ABC=∠ACB=72°因为BD平分∠ABC交AC于点D所以∠ABD=∠CBD=36°=∠A因为DE平分∠BDC交BC于点E所以∠CDE=∠BDE=36°=∠A所以AD=BD=BC根据黄金三角形的性质知,BCAC=5-1EC=所以EC考点:黄金三角形点评:黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°.它的腰与它的底成黄金比.当底角被平分时,角平分线分对边也成黄金比,17、2或【解析】
分两种情况讨论:(1)当时,,利用等腰三角形的三线合一性质和垂直平分线的性质可解;(2)当时,过点A作于点M,证明列比例式求出,从而得,再利用垂直平分线的性质得.【详解】解:(1)当时,∵垂直平分,.(2)当时,过点A作于点,在与中,.故答案为或.【点睛】本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.18、x≥﹣且x≠1.【解析】
根据分式有意义的条件、二次根式有意义的条件列式计算.【详解】由题意得,2x+3≥0,x-1≠0,解得,x≥-且x≠1,故答案为:x≥-且x≠1.【点睛】本题考查的是函数自变量的取值范围,①当表达式的分母不含有自变量时,自变量取全体实数.②当表达式的分母中含有自变量时,自变量取值要使分母不为零.③当函数的表达式是偶次根式时,自变量的取值范围必须使被开方数不小于零.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)本次参加抽样调查的居民有600人;(2)补图见解析;(3)72°;(4).【解析】试题分析:(1)用B的频数除以B所占的百分比即可求得结论;(2)分别求得C的频数及其所占的百分比即可补全统计图;(3)算出A的所占的百分比,再进一步算出C所占的百分比,再扇形统计图中C所对圆心角的度数;(4)列出树形图即可求得结论.试题解析:(1)60÷10%=600(人).答:本次参加抽样调查的居民有600人.(2)如图;(3),360°×(1-10%-30%-40%)=72°.(4)如图;(列表方法略,参照给分).P(C粽)=.答:他第二个吃到的恰好是C粽的概率是.考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法.20、(1)抛物线的解析式为:y=﹣x1+x+1(1)存在,P1(,2),P1(,),P3(,﹣)(3)当点E运动到(1,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(1)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P1,P3;作CH垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x1+mx+n经过A(﹣1,0),C(0,1).解得:,∴抛物线的解析式为:y=﹣x1+x+1;(1)∵y=﹣x1+x+1,∴y=﹣(x﹣)1+,∴抛物线的对称轴是x=.∴OD=.∵C(0,1),∴OC=1.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP1=CP3=CD.作CH⊥x轴于H,∴HP1=HD=1,∴DP1=2.∴P1(,2),P1(,),P3(,﹣);(3)当y=0时,0=﹣x1+x+1∴x1=﹣1,x1=2,∴B(2,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC的解析式为:y=﹣x+1.如图1,过点C作CM⊥EF于M,设E(a,﹣a+1),F(a,﹣a1+a+1),∴EF=﹣a1+a+1﹣(﹣a+1)=﹣a1+1a(0≤x≤2).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a1+1a)+(2﹣a)(﹣a1+1a),=﹣a1+2a+(0≤x≤2).=﹣(a﹣1)1+∴a=1时,S四边形CDBF的面积最大=,∴E(1,1).考点:1、勾股定理;1、等腰三角形的性质;3、四边形的面积;2、二次函数的最值21、(1)﹣2≤x<2;(2)x=.【解析】
(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.【详解】(1),∵解不等式①得:x<2,解不等式②得:x≥﹣2,∴不等式组的解集为﹣2≤x<2;(2)方程两边都乘以(2x﹣1)(x﹣2)得2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),解得:x=,检验:把x=代入(2x﹣1)(x﹣2)≠0,所以x=是原方程的解,即原方程的解是x=.【点睛】本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1)的关键,能把分式方程转化成整式方程是解(2)的关键.22、(1);(2)(,0);(3)1,M(2,﹣3).【解析】试题分析:方法一:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)首先根据抛物线的解析式确定A点坐标,然后通过证明△ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标.(3)△MBC的面积可由S△MBC=BC×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M.方法二:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可.(2)通过求出A,B,C三点坐标,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,从而求出圆心坐标.(3)利用三角形面积公式,过M点作x轴垂线,水平底与铅垂高乘积的一半,得出△MBC的面积函数,从而求出M点.试题解析:解:方法一:(1)将B(1,0)代入抛物线的解析式中,得:0=16a﹣×1﹣2,即:a=,∴抛物线的解析式为:.(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA•OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC为直角三角形,AB为△ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,0).(3)已求得:B(1,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=,即:,且△=0;∴1﹣1×(﹣2﹣b)=0,即b=﹣1;∴直线l:y=x﹣1.所以点M即直线l和抛物线的唯一交点,有:,解得:即M(2,﹣3).过M点作MN⊥x轴于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.方法二:(1)将B(1,0)代入抛物线的解析式中,得:0=16a﹣×1﹣2,即:a=,∴抛物线的解析式为:.(2)∵y=(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴KAC==﹣2,KBC==,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB为斜边的直角三角形,△ABC的外接圆的圆心是AB的中点,△ABC的外接圆的圆心坐标为(,0).(3)过点M作x轴的垂线交BC′于H,∵B(1,0),C(0,﹣2),∴lBC:y=x﹣2,设H(t,t﹣2),M(t,),∴S△MBC=×(HY﹣MY)(BX﹣CX)=×(t﹣2﹣)(1﹣0)=﹣t2+1t,∴当t=2时,S有最大值1,∴M(2,﹣3).点睛:考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强.熟练掌握直角三角形的相关性质以及三角形的面积公式是理出思路的关键.23、-2.【解析】试题分析:先算括号里面的,再算除法,解不等式组,求出x的取值范围,选出合适的x的值代入求值即可.试题解析:原式===解得-1≤x<,∴不等式组的整数解为-1,0,1,2若分式有意义,只能取x=2,∴原式=-=-2【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.24、(1)①证明见解析;②证明见解析;(2)△EFC是等腰直角三角形.理由见解析;(3).【解析】试题分析:(1)①过点E作EG⊥BC,垂足为G,根据ASA证明△CEG≌△FEM得CE=FE,再根据SAS证明△ABE≌△CBE得AE=CE,在△AEF中根据等腰三角形“三线合一”即可证明结论成立;②设AM=x,则AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,从而AF=AB,得到点F是AB的中点.;(2)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AME≌△FME(SAS),从而可得△EFC是等腰直角三角形.(3)方法同第(2)小题.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),再证明△AEM≌△FEM(ASA),得AM=FM,设AM=x,则AF=2x,DN=x,DE=x,BD=x,AB=x,=2x:x=.试题解析:(1)①过点E作EG⊥BC,垂足为G,则四边形MBGE为正方形,ME=GE,∠MFG=90°,即∠MEF+∠FEG=90°,又∠CEG+∠FEG=90°,∴∠CEG=∠FEM.又GE=ME,∠EGC=∠EMF=90°,∴△CEG≌△FEM.∴CE=FE,∵四边形ABCD为正方形,∴AB=CB,∠ABE=∠CBE=45°,BE=BE,∴△ABE≌△CBE.∴AE=CE,又CE=FE,∴AE=FE,又EM⊥AB,∴∠AEM=∠FEM.②设AM=x,∵AE=FE,又EM⊥AB,∴AM=FM=x,∴AF=2x,由四边形AMND为矩形知,DN=AM=x,在Rt△DEN中,∠EDN=45°,∴DE=DN=x,∴DO=2DE=2x,∴BD=2DO=4x.在Rt△ABD中,∠ADB=45°,∴AB=BD·sin45°=4x·=4x,又AF=2x,∴AF=AB,∴点F是AB的中点.(2)△EFC是等腰直角三角形.过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG,设AM=x,则DN=AM=x,DE=x,DO=3DE=3x,BD=2DO=6x.∴AB=6x,又,∴AF=2x,又AM=x,∴AM=MF=x,∴△AME≌△FME(SAS),∴AE=FE,∠AEM=∠FEM,又AE=CE,∠AEM=∠CEG,∴FE=CE,∠FEM=∠CEG,又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG+∠FEG=90°,即∠CEF=90°,又FE=CE,∴△EFC是等腰直角三角形.(3)过点E作EM⊥AB,垂足为M,延长ME交CD于点N,过点E作EG⊥BC,垂足为G.则△AEM≌△CEG(HL),∴∠AEM=∠CEG.∵EF⊥CE,∴∠FEC=90°,∴∠CEG+∠FEG=90°.又∠MEG=90°,∴∠MEF+∠FEG=90°,∴∠CEG=∠MEF,∵∠CEG=∠AEF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教A版安徽省合肥市普通高中联盟2023-2024学年高二上学期1月期末联考数学试题
- 武术说课稿课件
- 基层 工会 课件
- 介绍鲁滨逊课件
- 高考地理一轮复习第六章自然环境的整体性和差异性第一节植被与土壤课件
- 西京学院《微机原理与接口技术》2021-2022学年期末试卷
- 学管师工作核心说课
- 西京学院《教师语言艺术》2022-2023学年第一学期期末试卷
- 西京学院《电机控制技术》2021-2022学年期末试卷
- 学会读书 课件
- 林木种质资源调查表(新表)
- 蔬菜出口基地备案管理课件
- 子宫异常出血的护理
- 《耳穴疗法治疗失眠》课件
- 询盘分析及回复
- 氯化工艺安全培训课件
- 指导巡察工作精细科学
- 企业法律知识培训消费者权益保护实务
- 快乐读书吧-读后分享课:《十万个为什么》教学案列
- 2024年 贵州茅台酒股份有限公司招聘笔试参考题库含答案解析
- 河上建坝纠纷可行性方案
评论
0/150
提交评论