版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黄冈2024届中考四模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.tan30°的值为()A.12 B.32 C.32.若点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,则y1与y2的大小关系为()A.y1>y2B.y1≥y2C.y1<y2D.y1≤y23.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是()A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为24.当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C. D.5.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A.1 B.2 C.3 D.46.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、407.以x为自变量的二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是()A.b≥1.25 B.b≥1或b≤﹣1 C.b≥2 D.1≤b≤28.下列计算正确的是()A.a2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a2•a3=a6 D.a8÷a2=a49.今年春节某一天早7:00,室内温度是6℃,室外温度是-2℃,则室内温度比室外温度高()A.-4℃ B.4℃ C.8℃ D.-8℃10.y=(m﹣1)x|m|+3m表示一次函数,则m等于()A.1 B.﹣1 C.0或﹣1 D.1或﹣1二、填空题(共7小题,每小题3分,满分21分)11.点(1,–2)关于坐标原点O的对称点坐标是_____.12.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.13.如果实数x、y满足方程组,求代数式(+2)÷.14.已知反比例函数,在其图象所在的每个象限内,的值随的值增大而减小,那么它的图象所在的象限是第__________象限.15.如果不等式无解,则a的取值范围是________16.数据﹣2,0,﹣1,2,5的平均数是_____,中位数是_____.17.一个圆锥的三视图如图,则此圆锥的表面积为______.三、解答题(共7小题,满分69分)18.(10分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;②抛物线与的“完美三角形”的斜边长的数量关系是;(2)若抛物线的“完美三角形”的斜边长为4,求a的值;(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.19.(5分)如图,己知AB是⊙C的直径,C为圆上一点,D是BC的中点,CH⊥AB于H,垂足为H,连OD交弦BC于E,交CH于F,联结EH.(1)求证:△BHE∽△BCO.(2)若OC=4,BH=1,求20.(8分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.21.(10分)已知四边形ABCD为正方形,E是BC的中点,连接AE,过点A作∠AFD,使∠AFD=2∠EAB,AF交CD于点F,如图①,易证:AF=CD+CF.(1)如图②,当四边形ABCD为矩形时,其他条件不变,线段AF,CD,CF之间有怎样的数量关系?请写出你的猜想,并给予证明;(2)如图③,当四边形ABCD为平行四边形时,其他条件不变,线段AF,CD,CF之间又有怎样的数量关系?请直接写出你的猜想.图①图②图③22.(10分)某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图中m的值为_______________.(2)求这40个样本数据的平均数、众数和中位数:(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。23.(12分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)24.(14分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A=∠ADE.(1)求证:DE是⊙O的切线;(2)若AD=16,DE=10,求BC的长.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
直接利用特殊角的三角函数值求解即可.【详解】tan30°=33,故选:D【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.2、A【解析】
分别将点P(﹣3,y1)和点Q(﹣1,y2)代入正比例函数y=﹣k2x,求出y1与y2的值比较大小即可.【详解】∵点P(﹣3,y1)和点Q(﹣1,y2)在正比例函数y=﹣k2x(k≠0)图象上,∴y1=﹣k2×(-3)=3k2,y2=﹣k2×(-1)=k2,∵k≠0,∴y1>y2.故答案选A.【点睛】本题考查了正比例函数,解题的关键是熟练的掌握正比例函数的知识点.3、C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39;平均数==38.4方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64;∴选项A,B、D错误;故选C.考点:方差;加权平均数;中位数;众数.4、D【解析】
∵ab>0,∴a、b同号.当a>0,b>0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a<0,b<0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B图象符合要求.故选B.5、B【解析】
先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答【详解】将点A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有两个不等的实数根,∴x1+x2=4,x1•x2=3,∴AB=|x1﹣x2|==2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.6、D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.7、A【解析】∵二次函数y=x2-2(b-2)x+b2-1的图象不经过第三象限,a=1>0,∴Δ≤0或抛物线与x轴的交点的横坐标均大于等于0.当Δ≤0时,[-2(b-2)]2-4(b2-1)≤0,解得b≥.当抛物线与x轴的交点的横坐标均大于等于0时,设抛物线与x轴的交点的横坐标分别为x1,x2,则x1+x2=2(b-2)>0,Δ=[-2(b-2)]2-4(b2-1)>0,无解,∴此种情况不存在.∴b≥.8、B【解析】
解:A.a2+a2=2a2,故A错误;C、a2a3=a5,故C错误;D、a8÷a2=a6,故D错误;本题选B.考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方9、C【解析】
根据题意列出算式,计算即可求出值.【详解】解:根据题意得:6-(-2)=6+2=8,
则室内温度比室外温度高8℃,
故选:C.【点睛】本题考查了有理数的减法,熟练掌握运算法则是解题的关键.10、B【解析】由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.二、填空题(共7小题,每小题3分,满分21分)11、(-1,2)【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】A(1,-2)关于原点O的对称点的坐标是(-1,2),
故答案为:(-1,2).【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.12、【解析】
认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.13、1【解析】解:原式==xy+2x+2y,方程组:,解得:,当x=3,y=﹣1时,原式=﹣3+6﹣2=1.故答案为1.点睛:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.14、【解析】
直接利用反比例函数的增减性进而得出图象的分布.【详解】∵反比例函数y(k≠0),在其图象所在的每个象限内,y的值随x的值增大而减小,∴它的图象所在的象限是第一、三象限.故答案为:一、三.【点睛】本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键.15、a≥1【解析】
将不等式组解出来,根据不等式组无解,求出a的取值范围.【详解】解得,∵无解,∴a≥1.故答案为a≥1.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练的掌握解一元一次不等式组的运算法则.16、0.80【解析】
根据中位数的定义和平均数的求法计算即可,中位数是将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【详解】平均数=(−2+0−1+2+5)÷5=0.8;把这组数据按从大到小的顺序排列是:5,2,0,-1,-2,故这组数据的中位数是:0.故答案为0.8;0.【点睛】本题考查了平均数与中位数的定义,解题的关键是熟练的掌握平均数与中位数的定义.17、55πcm2【解析】
由正视图和左视图判断出圆锥的半径和母线长,然后根据圆锥的表面积公式求解即可.【详解】由三视图可知,半径为5cm,圆锥母线长为6cm,
∴表面积=π×5×6+π×52=55πcm2,故答案为:55πcm2.【点睛】本题考查了圆锥的计算,由该三视图中的数据确定圆锥的底面直径和母线长是解本题的关键,本题体现了数形结合的数学思想.如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积=πrl+πr2.三、解答题(共7小题,满分69分)18、(1)AB=2;相等;(2)a=±;(3),.【解析】
(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,设出点B的坐标为(n,-n),根据二次函数得出n的值,然后得出AB的值,②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn-4m-1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.(3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.【详解】(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,AB∥x轴,易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,∴,(舍去),∴抛物线的“完美三角形”的斜边②相等;(2)∵抛物线与抛物线的形状相同,∴抛物线与抛物线的“完美三角形”全等,∵抛物线的“完美三角形”斜边的长为4,∴抛物线的“完美三角形”斜边的长为4,∴B点坐标为(2,2)或(2,-2),∴.(3)∵的最大值为-1,∴,∴,∵抛物线的“完美三角形”斜边长为n,∴抛物线的“完美三角形”斜边长为n,∴B点坐标为,∴代入抛物线,得,∴(不合题意舍去),∴,∴19、(1)证明见解析;(2)EH=【解析】
(1)由题意推出∠EHB=∠OCB,(2)结合△BHE~△BCO,推出BHBC【详解】(1)证明:∵OD为圆的半径,D是的中点,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【点睛】本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.20、问题1:A、B两型自行车的单价分别是70元和80元;问题2:a的值为1【解析】
问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2:由题可得,×1000+×1000=10000,解得a=1,经检验:a=1是分式方程的解,故a的值为1.21、(1)图②结论:AF=CD+CF.(2)图③结论:AF=CD+CF.【解析】试题分析:(1)作,的延长线交于点.证三角形全等,进而通过全等三角形的对应边相等验证之间的关系;(2)延长交的延长线于点由全等三角形的对应边相等验证关系.试题解析:(1)图②结论:证明:作,的延长线交于点.∵四边形是矩形,由是中点,可证≌(2)图③结论:延长交的延长线于点如图所示因为四边形是平行四边形所以//且,因为为的中点,所以也是的中点,所以又因为所以又因为所以≌所以因为22、(1)25;(2)平均数:28.15,所以众数是28,中位数为28,(3)体育测试成绩得满分的大约有300名学生.【解析】
(1)根据统计图中的数据可以求得m的值;
(2)根据条形统计图中的数据可以计算出平均数,得到众数和中位数;
(3)根据样本中得满分所占的百分比,可以求得该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生.【详解】解:(1),∴m的值为25;(2)平均数:,因为在这组样本数据中,28出现了12次,出现的次数最多,所以众数是28;因为将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是28,所以这组样本数据的中位数为28;(3)×2000=300(名)∴估计该中学九年级2000名学生中,体育测试成绩得满分的大约有300名学生.【点睛】本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确它们各自的计算方法.23、塔CD的高度为37.9米【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毕业自我评价15篇
- 个人保证书集锦15篇
- 战友聚会致辞(15篇)
- 学生毕业晚会策划书12篇
- 四年级下册语文说课稿锦集六篇
- 客服辞职报告15篇
- 秋季幼儿园中班工作计划
- 出纳的实习报告范文锦集10篇
- 晶状体病-教学课件
- 健康检测设备代理销售合同(2篇)
- GB/T 42449-2023系统与软件工程功能规模测量IFPUG方法
- 酒店装修工程预算表EXCEL模板(推荐)
- NY 5052-2001无公害食品海水养殖用水水质
- 【讲座】2020年福建省高职分类考试招生指导讲座
- 性格决定命运课件
- 学习会计基础工作规范课件
- 双面埋弧焊螺旋钢管公称外公壁厚和每米理论重量
- 富士施乐VC2265打印机使用说明SPO
- 服务态度决定客户满意度试题含答案
- 教科版四年级科学上册全册复习教学设计及知识点整理
- 重庆万科渠道制度管理办法2022
评论
0/150
提交评论