版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省岳阳市城区达标名校2024年中考数学考试模拟冲刺卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为A.4-π B.2-πC.4-π D.2-π2.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是()A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>33.如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE于点O,若∠BOC=80°,则∠AOD的度数是()A.70° B.50° C.40° D.35°4.下列说法正确的是()A.2a2b与–2b2a的和为0B.的系数是,次数是4次C.2x2y–3y2–1是3次3项式D.x2y3与–是同类项5.估计-1的值在()A.0到1之间 B.1到2之间 C.2到3之间 D.3至4之间6.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD=2,BC=5,则△ABC的周长为()A.16 B.14 C.12 D.107.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③ B.仅有①② C.仅有①③ D.仅有②③8.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为()A.1.05×105 B.0.105×10﹣4 C.1.05×10﹣5 D.105×10﹣79.如图,用一个半径为6cm的定滑轮带动重物上升,假设绳索(粗细不计)与滑轮之间没有滑动,绳索端点G向下移动了3πcm,则滑轮上的点F旋转了()A.60° B.90° C.120° D.45°10.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,已知在Rt△ABC中,∠ACB=90°,AB=4,分别以AC,BC为直径作半圆,面积分别记为S1,S2,则S1+S2等_________.12.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.13.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.
14.已知反比例函数,在其图象所在的每个象限内,的值随的值增大而减小,那么它的图象所在的象限是第__________象限.15.若代数式在实数范围内有意义,则实数x的取值范围为_____.16.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_______.三、解答题(共8题,共72分)17.(8分)如图,已知一次函数y=kx+b的图象与反比例函数y=8(1)求一次函数的解析式;(2)求ΔAOB的面积。18.(8分)先化简:,然后从的范围内选取一个合适的整数作为x的值代入求值.19.(8分)某市正在举行文化艺术节活动,一商店抓住商机,决定购进甲,乙两种艺术节纪念品.若购进甲种纪念品4件,乙种纪念品3件,需要550元,若购进甲种纪念品5件,乙种纪念品6件,需要800元.(1)求购进甲、乙两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共80件,其中甲种纪念品的数量不少于60件.考虑到资金周转,用于购买这80件纪念品的资金不能超过7100元,那么该商店共有几种进货方案7(3)若销售每件甲种纪含晶可获利润20元,每件乙种纪念品可获利润30元.在(2)中的各种进货方案中,若全部销售完,哪一种方案获利最大?最大利利润多少元?20.(8分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=,求AB的长.21.(8分)如图,AB是的直径,AF是切线,CD是垂直于AB的弦,垂足为点E,过点C作DA的平行线与AF相交于点F,已知,.求AD的长;求证:FC是的切线.22.(10分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是_____度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在_____等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?23.(12分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.求y与x的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?24.已知:如图,,,.求证:.
参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】
由S阴影=S△OAE-S扇形OAF,分别求出S△OAE、S扇形OAF即可;【详解】连接OA,OD
∵OF⊥AD,
∴AC=CD=,
在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,
则∠DOA=120°,OA=2,
∴Rt△OAE中,∠AOE=60°,OA=2
∴AE=2,S阴影=S△OAE-S扇形OAF=×2×2-.故选B.【点睛】考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.2、B【解析】试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.故选B.考点:二次函数的图象.1061443、B【解析】分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数.详解:∵OE是∠BOC的平分线,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.4、C【解析】
根据多项式的项数和次数及单项式的系数和次数、同类项的定义逐一判断可得.【详解】A、2a2b与-2b2a不是同类项,不能合并,此选项错误;B、πa2b的系数是π,次数是3次,此选项错误;C、2x2y-3y2-1是3次3项式,此选项正确;D、x2y3与﹣相同字母的次数不同,不是同类项,此选项错误;故选C.【点睛】本题主要考查多项式、单项式、同类项,解题的关键是掌握多项式的项数和次数及单项式的系数和次数、同类项的定义.5、B【解析】试题分析:∵2<<3,∴1<-1<2,即-1在1到2之间,故选B.考点:估算无理数的大小.6、B【解析】
根据切线长定理进行求解即可.【详解】∵△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,∴AF=AD=2,BD=BE,CE=CF,∵BE+CE=BC=5,∴BD+CF=BC=5,∴△ABC的周长=2+2+5+5=14,故选B.【点睛】本题考查了三角形的内切圆以及切线长定理,熟练掌握切线长定理是解题的关键.7、A【解析】
解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408m,∴b=500-408=92m.因此②正确.∵甲走到终点一共需耗时500/4=125s,,∴c=125-2=1s.因此③正确.终上所述,①②③结论皆正确.故选A.8、C【解析】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.所以0.0000105=1.05×10﹣5,故选C.考点:科学记数法.9、B【解析】
由弧长的计算公式可得答案.【详解】解:由圆弧长计算公式,将l=3π代入,可得n=90,故选B.【点睛】本题主要考查圆弧长计算公式,牢记并运用公式是解题的关键.10、A。【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。此时,由AB=2,根据勾股定理,得弦AP=x=。∴当x=时,△APO的面积y最大,最大面积为y=。从而可排除B,D选项。又∵当AP=x=1时,△APO为等边三角形,它的面积y=,∴此时,点(1,)应在y=的一半上方,从而可排除C选项。故选A。二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】试题解析:所以故答案为12、3﹣1【解析】
通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.【详解】如图,当Q在对角线BD上时,BQ最小.连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).故答案为3﹣1.【点睛】本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.13、(-2,-2)【解析】
先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.14、【解析】
直接利用反比例函数的增减性进而得出图象的分布.【详解】∵反比例函数y(k≠0),在其图象所在的每个象限内,y的值随x的值增大而减小,∴它的图象所在的象限是第一、三象限.故答案为:一、三.【点睛】本题考查了反比例的性质,正确掌握反比例函数图象的分布规律是解题的关键.15、x≤1【解析】
根据二次根式有意义的条件可求出x的取值范围.【详解】由题意可知:1﹣x≥0,∴x≤1故答案为:x≤1.【点睛】本题考查二次根式有意义的条件,解题的关键是利用被开方数是非负数解答即可.16、1【解析】
根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值.【详解】解:根据题意得=1%,解得n=1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球.故答案为1.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.三、解答题(共8题,共72分)17、(1)y=x+2;(2)6.【解析】
(1)由反比例函数解析式根据点A的横坐标是2,点B的纵坐标是-2可以求得点A、点B的坐标,然后根据待定系数法即可求得一次函数的解析式;(2)令直线AB与y轴交点为D,求出点D坐标,然后根据三角形面积公式进行求解即可得.【详解】(1)当x=2时,y=当y=-2时,-2=8x所以点A(2,4),点B(-4,-2),将A,B两点分别代入一次函数解析式,得2k+b=4-4k+b=-2解得:k=1b=2所以,一次函数解析式为y=(2)令直线AB与y轴交点为D,则OD=b=2,SΔAOB【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握待定系数法是解本题的关键.18、,当x=1时,原式=﹣1.【解析】
先化简分式,然后将x的值代入计算即可.【详解】解:原式==.且,∴x的整数有,∴取,当时,原式.【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算法则是解题的关键.19、(1)购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)若全部销售完,方案一获利最大,最大利润是1800元.【解析】分析:(1)设购进甲种纪念品每件价格为x元,乙种纪念币每件价格为y元,根据题意得出关于x和y的二元一次方程组,解方程组即可得出结论;(2)设购进甲种纪念品a件,根据题意列出关于x的一元一次不等式,解不等式得出a的取值范围,即可得出结论;(3)找出总利润关于购买甲种纪念品a件的函数关系式,由函数的增减性确定总利润取最值时a的值,从而得出结论.详解:(1)设购进甲种纪念品每件需x元,购进乙种纪念品每件需y元.由题意得:,解得:答:购进甲种纪念品每件需100元,购进乙种纪念品每件需50元.(2)设购进甲种纪念品a(a≥60)件,则购进乙种纪念品(80﹣a)件.由题意得:100a+50(80﹣a)≤7100解得a≤1又a≥60所以a可取60、61、1.即有三种进货方案.方案一:甲种纪念品60件,乙种纪念品20件;方案二:甲种纪念品61件,乙种纪念品19件;方案三:甲种纪念品1件,乙种纪念品18件.(3)设利润为W,则W=20a+30(80﹣a)=﹣10a+2400所以W是a的一次函数,﹣10<0,W随a的增大而减小.所以当a最小时,W最大.此时W=﹣10×60+2400=1800答:若全部销售完,方案一获利最大,最大利润是1800元.点睛:本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的应用,找到相应的数量关系是解决问题的关键,注意第二问应求整数解,要求学生能够运用所学知识解决实际问题.20、(1)证明见解析(2)3【解析】
(1)连接,由为的中点,得到,等量代换得到,根据平行线的性质得到,即可得到结论;(2)连接,由勾股定理得到,根据切割线定理得到,根据勾股定理得到,由圆周角定理得到,即可得到结论.【详解】相切,连接,∵为的中点,∴,∵,∴,∴,∴,∵,∴,∴直线与相切;方法:连接,∵,,∵,∴,∵是的切线,∴,∴,∴,∵为的中点,∴,∵为的直径,∴,∴.方法:∵,易得,∴,∴.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.21、(1);(2)证明见解析.【解析】
(1)首先连接OD,由垂径定理,可求得DE的长,又由勾股定理,可求得半径OD的长,然后由勾股定理求得AD的长;(2)连接OF、OC,先证明四边形AFCD是菱形,易证得△AFO≌△CFO,继而可证得FC是⊙O的切线.【详解】证明:连接OD,是的直径,,,设,,,在中,,,解得:,,,,在中,;连接OF、OC,是切线,,,,,四边形FADC是平行四边形,,平行四边形FADC是菱形,,,,,即,即,点C在上,是的切线.【点睛】此题考查了切线的判定与性质、菱形的判定与性质、垂径定理、勾股定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.22、(1)117;(2)答案见图;(3)B;(4)30.【解析】
(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州财经职业学院《先进制造训练》2023-2024学年第一学期期末试卷
- 贵阳职业技术学院《户外基础技能》2023-2024学年第一学期期末试卷
- 2025浙江省安全员A证考试题库
- 白玉桃种植示范基地建设项目可行性研究报告-白玉桃市场需求持续扩大
- 广州中医药大学《商业银行管理》2023-2024学年第一学期期末试卷
- 2025江苏省安全员B证考试题库
- 2025黑龙江省建筑安全员知识题库附答案
- 2025河南省建筑安全员考试题库附答案
- 2025河北建筑安全员《A证》考试题库
- 2025年辽宁省安全员《A证》考试题库
- 多源数据融合平台建设方案
- 2023-2024学年上海市普陀区三年级(上)期末数学试卷
- 居家养老上门服务投标文件
- 浙江省宁波市鄞州区2024年七年级上学期期末数学试题【含答案】
- 浙江省杭州市钱塘区2023-2024学年四年级上学期语文期末试卷
- GB/T 44713-2024节地生态安葬服务指南
- 2024年形势与政策 第一讲《读懂中国式现代化》
- 2024-2025学年苏教版四年级上册期末自主测试数学试卷(一)(含答案解析)
- 光伏发电系统数据采集规范指南
- 2024年天津三源电力集团限公司社会招聘33人高频难、易错点500题模拟试题附带答案详解
- 校(园)廉政风险防控预警处置制度
评论
0/150
提交评论