版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级下册数学《第十九章一次函数》19.4待定系数法求一次函数的解析式知识点知识点用待定系数法求一次函数的解析式◆1、定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而得出函数解析式的方法,叫做待定系数法.◆2、待定系数法求一次函数解析式一般步骤:设:设一次函数的一般形式y=kx+b;(2)列:把图象上的点(x1,y1),(x2,y2)代入一次函数的解析式,组成二元一次方程组;(3)解:解二元一次方程组得k,b;(4)还原:把k,b的值代入一次函数的解析式.【注意】求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值.题型一已知两点确定函数解析式题型一已知两点确定函数解析式【例题1】(2022秋•平桂区期末)已知一次函数的图象经过A(2,0),B(0,4)两点.(1)求此一次函数表达式;(2)试判断点(﹣1,6)是否在此一次函数的图象上.解题技巧提炼本题考查了用待定系数法求一次函数的解析式,若同时有多个点可以选择时,往往选取数值较小,且容易计算的点的坐标代入求值.【变式1-1】(2022秋•锡山区校级月考)一次函数y=kx+b的图象经过A(1,1),B(2,﹣1)两点,则这个函数的表达式为.【变式1-2】(2021•鹿城区校级三模)已知y是关于x的一次函数,下表列出了部分对应值,则a的值为.x012ya13【变式1-3】(2022秋•长兴县期末)已知y是x的一次函数,且当x=0时,y=3;当x=﹣2时,y=6.(1)求这个一次函数的表达式;(2)当x=3时,求出对应y的值.【变式1-4】(2021秋•射洪市期末)已知函数y=kx+b,自变量x的取值范围为﹣1≤x≤7,相应函数值的取值范围为﹣12≤y≤8,求该函数的表达式.【变式1-5】(2022秋•嘉兴期末)已知y是关于x的一次函数,且点A(0,4),B(1,2)在此函数图象上.(1)求这个一次函数的表达式;(2)当﹣2≤y<4时,求x的取值范围.【变式1-6】(2022秋•亭湖区期末)已知一次函数y=kx+7的图象经过点A(2,3).(1)求k的值;(2)判断点B(﹣1,8),C(3,1)是否在这个函数的图象上,并说明理由;(3)当﹣3<x<﹣1时,求y的取值范围.题型二由函数图象确定函数解析式题型二由函数图象确定函数解析式【例题2】(2021春•长沙期末)一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?解题技巧提炼本题考查用待定系数法求函数解析式,解题关键是利用所给条件得到关键点的坐标,进而求得函数解析式.【变式2-1】(2021春•永年区月考)直线y=kx+b在直角坐标系中的位置如图所示,这条直线的函数表达式为()A.y=2x+4 B.y=﹣2x+4 C.y=4x+2 D.y=﹣4x﹣2【变式2-2】(2022春•周至县期末)如图,一次函数y=kx+b(k≠0)的图象经过点A、B.(1)根据图象,求一次函数的解析式;(2)将一次函数图象向下平移5个单位后经过点(m,﹣5),求m的值.【变式2-3】(2022春•朝阳区校级期中)如图,直线l是一次函数y=kx+b的图象.(1)求直线l的解析式;(2)如果直线l向上平移3个单位后,经过点A(3,m),求m的值.【变式2-4】已知某一次函数的图象如图所示.(1)求这个一次函数的解析式.(2)请直接写出该直线关于y轴对称的直线解析式.【变式2-5】如图,直线l是一次函数y=kx+b的图象.(1)求出这个一次函数的解析式;(2)将该函数的图象向下平移3个单位,求出平移后一次函数的解析式,并写出平移后的图象与x轴的交点坐标.【变式2-6】已知正比例函数y=mx与一次函数y=ax+b的图象交于点A(1,3);(1)求这两个函数的解析式;(2)求该一次函数的图象与坐标轴所围成的三角形的面积;题型三题型三利用已知函数关系式,再求函数关系式【例题3】(2021秋•新吴区期末)已知y+2与4﹣x成正比例,且x=3时,y=1.(1)求y与x之间的函数表达式;(2)当﹣2<y<1时,求x的取值范围.解题技巧提炼首先根据成正比例,设出函数解析式y+2=k(4﹣x),把x和y的值代入求出k的值,即可确定出y与x的函数关系式;此题考查了待定系数法求一次函数解析式,以及一次函数的性质,熟练掌握待定系数法是解本题的关键.【变式3-1】(2022秋•金牛区校级期末)已知y和x﹣2成正比例,当x=3时,y=﹣4,则y与x的函数关系式为.【变式3-2】(2021秋•烈山区期末)已知y与x﹣1成正比例,且当x=3时,y=4.(1)求出y与x之间的函数解析式;(2)当x=1时,求y的值.【变式3-3】已知y+4与x﹣3成正比例,且x=5时y=4,则当x=2时,y的值为.【变式3-4】(2021秋•射阳县校级期末)已知y+2与x+1成正比,且x=2时y=7.(1)求y与x之间的函数关系式;(2)当y=4时,求x的值.【变式3-5】(2021秋•高邮市期末)已知y﹣2与x+1成正比例,且x=2时,y=8.(1)写出y与x之间的函数关系式;(2)已知点P(m,n)在该函数的图象上.且m>n,求m的取值范围.【变式3-6】(2022•南京模拟)已知y=y1+y2,且y1﹣3与x成正比例,y2与x﹣2成正比例,当x=2时,y=7,当x=1时,y=0.(1)求出y与x之间的函数关系式;(2)计算x=4时,y的值.题型四由三角形的面积确定一次函数解析式题型四由三角形的面积确定一次函数解析式【例题4】(2022秋•西安期末)已知某直线经过点A(0,2),且与两坐标轴围成的三角形面积为2.则该直线的一次函数表达式是.解题技巧提炼解决本题的关键是根据直线与坐标轴围成三角形的面积确定另一个点的坐标.【变式4-1】(2022秋•东平县期末)已知一次函数的图象经过点P(0,﹣2),且与两条坐标轴截得的直角三角形的面积为3,则此一次函数的解析式为.【变式4-2】(2022春•濮阳期末)已知一次函数y=kx+b(k≠0)的图象经过点A(3,0),与y轴交于点B,O为坐标原点.若△AOB的面积为6,则该一次函数的解析式为.【变式4-3】(2022春•上海期中)已知直线y=kx+b(k≠0)与坐标轴围成的三角形面积是6,且经过(2,0),则这条直线的表达式是.【变式4-4】(2022春•建瓯市校级月考)已知一次函数y=﹣2x+b的图象与x轴交于点A,与y轴交于点B,O为坐标原点.若S△AOB=6,求一次函数解析式.【变式4-5】(2021秋•文山市校级期末)如图,在△ABO中,以O为原点构建直角坐标系,点B在x轴上,AB与y轴交于点C(0,3),已知OB=4,S△AOB=8.(1)求直线AB的解析式;(2)求点A的坐标.【变式4-6】(2022•南京模拟)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,直线y=﹣x+b分别交OA、AB于点C、D,且△BOD的面积是4(1)求直线AO的解析式;(2)求直线CD的解析式.题型五利用图形变换确定一次函数解析式题型五利用图形变换确定一次函数解析式【例题5】(2022秋•南京期末)将一次函数y=﹣2x+3的图象沿y轴向上平移2个单位长度,则平移后的图象所对应的函数表达式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+7解题技巧提炼1、平移变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线的解析式为y=kx+b+m.2.轴对称变换:①关于x轴对称,就是x不变,y变成﹣y:﹣y=kx+b,即y=﹣kx﹣b;(关于x轴对称,横坐标不变,纵坐标是原来的相反数)②关于y轴对称,就是y不变,x变成﹣x:y=k(﹣x)+b,即y=﹣kx+b;(关于y轴对称,纵坐标不变,横坐标是原来的相反数)3.旋转图形的坐标:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.【变式5-1】(2022秋•南山区期末)一次函数y=kx+b的图象经过点A(2,3),每当x增加1个单位时,y增加3个单位,则此函数图象向上平移2个单位长度的表达式是.【变式5-2】(2022春•唐河县期中)将直线y=3x﹣2平移后过点(3,1),则平移后函数的表达式是.【变式5-3】(2022秋•沙坪坝区校级期末)将直线y=﹣2x+6向左移1个单位,所得到的直线解析式为()A.y=﹣2x+7 B.y=﹣2x+5 C.y=﹣2x+8 D.y=﹣2x+4【变式5-4】(2021春•古丈县期末)某个一次函数的图象与直线y=12x+6平行,并且经过点(﹣2,﹣A.y=-12x﹣5 B.y=12x+3 C.y=12x﹣3 D.【变式5-5】(2022秋•贵池区期末)如图一次函数y=kx+b的图象与x轴交于点A(﹣6,0),与y轴交于点B(0,3),点C在直线AB上,过点C作CD⊥x轴,垂足为D,将直线AB沿y轴方向向下平移若干单位长度得到的直线l恰好经过点D,若OD=2,则直线l的函数表达式为.【变式5-6】(2022•桥西区校级模拟)在平面直角坐标系xOy中,直线y=-34x+3分别与x轴、y轴交于点A、B,将△AOB沿过点A的直线折叠,使点B落在x轴的负半轴上,记作点C,折痕与y轴交于点D,则直线AD的解析式为【变式5-7】如图,在直角坐标系中,直线y=kx+4与x轴正半轴交于一点A,与y轴交于点B,已知△OAB的面积为10,求:(1)这条直线的解析式;(2)若将这条直线沿x轴翻折,求翻折后得到的直线的解析式.【变式5-8】(2021秋•溧水区期末)如图,正比例函数y=kx(k≠0)的图象经过点A(2,4),AB⊥x轴于点B,将△ABO绕点A逆时针旋转90°得到△ADC,则直线AC的函数表达式为.题型六由实际问题确定一次函数解析式题型六由实际问题确定一次函数解析式【例题6】(2021秋•高新区校级期末)新冠肺炎依然在肆虐,“郑州加油!中国加油!”每个人都在为抗击疫情而努力.市场对口罩的需求依然很大,某公司销售一种进价为20元/袋的口罩,其销售量y(万袋)与销售价格x(元/袋)的变化如下表所示,则y(万袋)与x(元/袋)之间的一次函数解析式是.价格x(元/袋)…561015.5…销售量y(万袋)…32.820.9…解题技巧提炼结合题意根据实际问题中的数量关系式,找到题中的等量关系式,然后然后根据等量关系式代入相关的数据即可求出函数解析式.【变式6-1】(2022春•广阳区校级期末)某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升.如果每升汽油7.6元,求油箱内汽油的总价y(元)与x(升)之间的函数关系是()A.y=7.6x(0≤x≤20) B.y=7.6x+76(0≤x≤20) C.y=7.6x+10(0≤x≤20) D.y=7.6x+76(10≤x≤30)【变式6-2】(2021春•宽城县期末)等腰三角形的周长是40cm,腰长y(cm)是底边长x(cm)的函数解析式正确的是()A.y=﹣0.5x+20(0<x<20) B.y=﹣0.5x+20(10<x<20) C.y=﹣2x+40(10<x<20) D.y=﹣2x+40(0<x<20)【变式6-3】(2022春•阜新县期末)A、B两地相距500千米,一辆汽车以50千米/时的速度由A地驶向B地.汽车距B地的距离y(千米)与行驶时间t(之间)的关系式为.【变式6-4】(2022春•顺德区校级期中)地面温度为15℃,如果高度每升高1千米,气温下降6℃,则高度h(千米)与气温t(℃)之间的关系式为h=.【变式6-5】(2022春•船山区校级期中)已知等腰三角形的周长为12,设腰长为x,底边长为y.(1)试写出y关于x的函数解析式,并直接写出自变量x的取值范围;(2)当x=5时,求出函数值.【变式6-6】(2020春•香洲区校级期中)拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量【变式6-7】(2012•长春校级模拟)某桶装水销售部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,现在每桶水的销售价格为8元,如果用x(单位:桶)表示每天的销售数量,用y(元)表示每天的利润(利润=总销售额﹣固定成本﹣售出水的成本).(1)试写出y与x的函数关系式.(2)若现在固定成本增加了5%,每桶水的进价增加了1元,求此时y与x的函数关系式.【变式6-8】(2021秋•朝阳区校级月考)周长为12米的竹篱笆围成一个如图所示的长方形的养鸡场,养鸡场一边靠墙,另三边用竹篱笆围成,如果养鸡场一边长为x米,另一边为y米.(1)写出y与x之间的函数解析式;(2)求出自变量x的取值范围.题型七与确定函数解析式有关的综合性问题题型七与确定函数解析式有关的综合性问题【例题7】如图,在平面直角坐标系中,点A,B的坐标分别为(-32,0),(32,1),连接AB,以AB(1)求点C的坐标;(2)求线段BC所在直线的解析式.解题技巧提炼此题主要考查待定系数求一次函数的解析式及等边三角形的性质,此题的关键是利用等边三角形的性质求得点C的坐标,再利用待定系数法求一次函数的解析式.【变式7-1】(2022春•封开县期末)如图,在平面直角坐标系中,A(﹣2,0),B(1,4).(1)求直线AB的解析式;(2)已知点C在第一象限,且到两坐标轴距离相等,若S△AOB=2S△AOC,求点C的坐标.【变式7-2】(2023•鼓楼区校级一模)如图,直线l是一次函数y=kx+b的图象,直线经过点(3,﹣3),交x轴于点A,交y轴于点B(0,1).(1)求直线l的解析式;(2)求l与两坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械教具课程设计
- 机械工艺与装配课程设计
- 机械基础基础课程设计
- 机械原理课课程设计
- 机械制造训练课程设计
- 三年级体育上册 50米快速跑教案
- 机械制造工业学课程设计
- 2016年湖北省鄂州市中考真题语文试题(解析版)
- 机械专业有什么课程设计
- 机床控制技术课程设计
- 政府会计练习题集题库及答案
- 动物诊疗许可证申请表 (2)
- 数列(中职数学春季高考练习题)
- 《腰段解剖》PPT课件
- 李砚祖《艺术设计概论》第四章设计概论设计与科学技术通用课件
- 高速铁路桥涵工程桥上救援疏散通道施工方案
- 招投标法实施条例解读PPT
- 班会PPT: 认识小动物儿童PPT课件
- 机场道面混凝土施工工艺及方法
- 部编版三年级语文上册教材解读及教学建议(课堂PPT)
- 隐形眼镜医疗器械质量管理制度
评论
0/150
提交评论