版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年陕西省榆林市米脂县重点中学中考数学模拟预测题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.已知二次函数y=ax2+bx+c的图像经过点(0,m)、(4、m)、(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0C.a>0且2a+b=0 D.a<0且2a+b=02.函数y=自变量x的取值范围是()A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤33.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为()A.12cm B.12cm C.24cm D.24cm4.如图,O为原点,点A的坐标为(3,0),点B的坐标为(0,4),⊙D过A、B、O三点,点C为上一点(不与O、A两点重合),则cosC的值为()A. B. C. D.5.点A(-2,5)关于原点对称的点的坐标是()A.(2,5)B.(2,-5)C.(-2,-5)D.(-5,-2)6.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A为对称中心作点P(0,2)的对称点P1,以B为对称中心作点P1的对称点P2,以C为对称中心作点P2的对称点P3,以D为对称中心作点P3的对称点P4,…,重复操作依次得到点P1,P2,…,则点P2010的坐标是()A.(2010,2) B.(2010,﹣2) C.(2012,﹣2) D.(0,2)7.计算(﹣ab2)3的结果是()A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b68.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=()A.50° B.40° C.30° D.20°9.如图,▱ABCD对角线AC与BD交于点O,且AD=3,AB=5,在AB延长线上取一点E,使BE=AB,连接OE交BC于F,则BF的长为()A. B. C. D.110.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上,若∠ADE=125°,则∠DBC的度数为()A.125° B.75° C.65° D.55°二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系中,已知A(﹣2,1),B(1,0),将线段AB绕着点B顺时针旋转90°得到线段BA′,则A′的坐标为_____.12.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_______________.13.如图,扇形的半径为,圆心角为120°,用这个扇形围成一个圆锥的侧面,所得的圆锥的高为______.14.使有意义的x的取值范围是______.15.已知三角形两边的长分别为1、5,第三边长为整数,则第三边的长为_____.16.如图,如果两个相似多边形任意一组对应顶点P、P′所在的直线都是经过同一点O,且有OP′=k·OP(k≠0),那么我们把这样的两个多边形叫位似多边形,点O叫做位似中心,已知△ABC与△A′B′C′是关于点O的位似三角形,OA′=3OA,则△ABC与△A′B′C′的周长之比是________.17.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为.三、解答题(共7小题,满分69分)18.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.(1)求此抛物线的解析式及顶点D的坐标;(2)点M是抛物线上的动点,设点M的横坐标为m.①当∠MBA=∠BDE时,求点M的坐标;②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.19.(5分)小明准备用一块矩形材料剪出如图所示的四边形ABCD(阴影部分),做成要制作的飞机的一个机翼,请你根据图中的数据帮小明计算出CD的长度.(结果保留根号).20.(8分)在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与点B、C重合),以AD为直角边在AD右侧作等腰三角形ADE,使∠DAE=90°,连接CE.探究:如图①,当点D在线段BC上时,证明BC=CE+CD.应用:在探究的条件下,若AB=,CD=1,则△DCE的周长为.拓展:(1)如图②,当点D在线段CB的延长线上时,BC、CD、CE之间的数量关系为.(2)如图③,当点D在线段BC的延长线上时,BC、CD、CE之间的数量关系为.21.(10分)问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.22.(10分)如图,一次函数y=-x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.23.(12分)如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线()过E,A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.24.(14分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】
由图像经过点(0,m)、(4、m)可知对称轴为x=2,由n<m知x=1时,y的值小于x=0时y的值,根据抛物线的对称性可知开口方向,即可知道a的取值.【详解】∵图像经过点(0,m)、(4、m)∴对称轴为x=2,则,∴4a+b=0∵图像经过点(1,n),且n<m∴抛物线的开口方向向上,∴a>0,故选A.【点睛】此题主要考查抛物线的图像,解题的关键是熟知抛物线的对称性.2、B【解析】由题意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故选B.3、D【解析】
过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.【详解】如图,过A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故选:D.【点睛】本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.4、D【解析】
如图,连接AB,由圆周角定理,得∠C=∠ABO,在Rt△ABO中,OA=3,OB=4,由勾股定理,得AB=5,∴.故选D.5、B【解析】
根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).【详解】根据中心对称的性质,得点P(−2,5)关于原点对称点的点的坐标是(2,−5).故选:B.【点睛】考查关于原点对称的点的坐标特征,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).6、B【解析】分析:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,结合中点坐标公式即可求得点P1的坐标;同理可求得其它各点的坐标,分析可得规律,进而可得答案.详解:根据题意,以A为对称中心作点P(0,1)的对称点P1,即A是PP1的中点,又∵A的坐标是(1,1),结合中点坐标公式可得P1的坐标是(1,0);同理P1的坐标是(1,﹣1),记P1(a1,b1),其中a1=1,b1=﹣1.根据对称关系,依次可以求得:P3(﹣4﹣a1,﹣1﹣b1),P4(1+a1,4+b1),P5(﹣a1,﹣1﹣b1),P6(4+a1,b1),令P6(a6,b1),同样可以求得,点P10的坐标为(4+a6,b1),即P10(4×1+a1,b1),∵1010=4×501+1,∴点P1010的坐标是(1010,﹣1),故选:B.点睛:本题考查了对称的性质,坐标与图形的变化---旋转,根据条件求出前边几个点的坐标,得到规律是解题关键.7、D【解析】
根据积的乘方与幂的乘方计算可得.【详解】解:(﹣ab2)3=﹣a3b6,故选D.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则.8、B【解析】试题解析:延长ED交BC于F,∵AB∥DE,∴在△CDF中,故故选B.9、A【解析】
首先作辅助线:取AB的中点M,连接OM,由平行四边形的性质与三角形中位线的性质,即可求得:△EFB∽△EOM与OM的值,利用相似三角形的对应边成比例即可求得BF的值.【详解】取AB的中点M,连接OM,∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,∴OM∥AD∥BC,OM=AD=×3=,∴△EFB∽△EOM,∴,∵AB=5,BE=AB,∴BE=2,BM=,∴EM=+2=,∴,∴BF=,故选A.【点睛】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.10、D【解析】
延长CB,根据平行线的性质求得∠1的度数,则∠DBC即可求得.【详解】延长CB,延长CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°−∠1=180°−125°=55°.故答案选:D.【点睛】本题考查的知识点是平行线的性质,解题的关键是熟练的掌握平行线的性质.二、填空题(共7小题,每小题3分,满分21分)11、(2,3)【解析】
作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,证明△ABC≌△BA′C′,可得OC′=OB+BC′=1+1=2,A′C′=BC=3,可得结果.【详解】如图,作AC⊥x轴于C,作A′C′⊥x轴,垂足分别为C、C′,∵点A、B的坐标分别为(-2,1)、(1,0),∴AC=2,BC=2+1=3,∵∠ABA′=90°,∴ABC+∠A′BC′=90°,∵∠BAC+∠ABC=90°,∴∠BAC=∠A′BC′,∵BA=BA′,∠ACB=∠BC′A′,∴△ABC≌△BA′C′,∴OC′=OB+BC′=1+1=2,A′C′=BC=3,∴点A′的坐标为(2,3).故答案为(2,3).【点睛】此题考查旋转的性质,三角形全等的判定和性质,点的坐标的确定.解决问题的关键是作辅助线构造全等三角形.12、a<2且a≠1.【解析】
利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.【详解】试题解析:∵关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,∴△=b2-4ac>0,即4-4×(a-2)×1>0,解这个不等式得,a<2,又∵二次项系数是(a-1),∴a≠1.故a的取值范围是a<2且a≠1.【点睛】本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.13、4cm【解析】
求出扇形的弧长,除以2π即为圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.【详解】扇形的弧长==4π,
圆锥的底面半径为4π÷2π=2,
故圆锥的高为:=4,
故答案为4cm.【点睛】本题考查了圆锥的计算,重点考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.14、【解析】二次根式有意义的条件.【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.15、2【解析】分析:根据三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,求得第三边的取值范围,再进一步根据第三边是整数求解.详解:根据三角形的三边关系,得第三边>4,而<1.又第三条边长为整数,则第三边是2.点睛:此题主要是考查了三角形的三边关系,同时注意整数这一条件.16、1:1【解析】分析:根据相似三角形的周长比等于相似比解答.详解:∵△ABC与△A′B′C′是关于点O的位似三角形,∴△ABC∽△A′B′C′.∵OA′=1OA,∴△ABC与△A′B′C′的周长之比是:OA:OA′=1:1.故答案为1:1.点睛:本题考查的是位似变换的性质,位似变换的性质:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.17、1或.【解析】
当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=1,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如答图1所示.
连结AC,
在Rt△ABC中,AB=1,BC=4,
∴AC==5,
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,
∴EB=EB′,AB=AB′=1,
∴CB′=5-1=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2,
∴x2+22=(4-x)2,解得,
∴BE=;
②当点B′落在AD边上时,如答图2所示.
此时ABEB′为正方形,∴BE=AB=1.
综上所述,BE的长为或1.
故答案为:或1.三、解答题(共7小题,满分69分)18、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为或【解析】
(1)利用待定系数法即可解决问题;(2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.【详解】解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴抛物线的解析式为y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴顶点D坐标(1,4);(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x轴,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,当点M在x轴上方时,=,解得m=﹣或3(舍弃),∴M(﹣,),当点M在x轴下方时,=,解得m=﹣或m=3(舍弃),∴点M(﹣,﹣),综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);②如图中,∵MN∥x轴,∴点M、N关于抛物线的对称轴对称,∵四边形MPNQ是正方形,∴点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,当﹣m2+2m+3=1﹣m时,解得m=,当﹣m2+2m+3=m﹣1时,解得m=,∴满足条件的m的值为或.【点睛】本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.19、CD的长度为17﹣17cm.【解析】
在直角三角形中用三角函数求出FD,BE的长,而FC=AE=AB+BE,而CD=FC-FD,从而得到答案.【详解】解:由题意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,则CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的长度为17﹣17cm.【点睛】本题主要考查了在直角三角形中三角函数的应用,解本题的要点在于求出FC与FD的长度,即可求出答案.20、探究:证明见解析;应用:;拓展:(1)BC=CD-CE,(2)BC=CE-CD【解析】试题分析:探究:判断出∠BAD=∠CAE,再用SAS即可得出结论;
应用:先算出BC,进而算出BD,再用勾股定理求出DE,即可得出结论;
拓展:(1)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论;
(2)同探究的方法得出△ABD≌△ACE,得出BD=CE,即可得出结论.试题解析:探究:∵∠BAC=90°,∠DAE=90°,
∴∠BAC=∠DAE.
∵∠BAC=∠BAD+∠DAC,∠DAE=∠CAE+∠DAC,
∴∠BAD=∠CAE.
∵AB=AC,AD=AE,
∴△ABD≌△ACE.
∴BD=CE.
∵BC=BD+CD,
∴BC=CE+CD.
应用:在Rt△ABC中,AB=AC=,
∴∠ABC=∠ACB=45°,BC=2,
∵CD=1,
∴BD=BC-CD=1,
由探究知,△ABD≌△ACE,
∴∠ACE=∠ABD=45°,
∴∠DCE=90°,
在Rt△BCE中,CD=1,CE=BD=1,
根据勾股定理得,DE=,
∴△DCE的周长为CD+CE+DE=2+
故答案为2+拓展:(1)同探究的方法得,△ABD≌△ACE.∴BD=CE
∴BC=CD-BD=CD-CE,
故答案为BC=CD-CE;(2)同探究的方法得,△ABD≌△ACE.
∴BD=CE
∴BC=BD-CD=CE-CD,
故答案为BC=CE-CD.21、(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2.【解析】
(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.22、(1);(2)1<x<1.【解析】
(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
(2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,解得:n=1,∴点A的坐标为(1,1).∵反比例函数y=(k≠0)过点A(1,1),∴k=1×1=1,∴反比例函数的解析式为y=.联立,解得:或,∴点B的坐标为(1,1).(2)观察函数图象,发现:当1<x<1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.23、(1)45;(m,﹣m);(2)相似;(3)①;②.【解析】试题分析:(1)由B与C的坐标求出OB与OC的长,进一步表示出BC的长,再证三角形AOB为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A′坐标;(2)△D′OE∽△ABC.表示出A与B的坐标,由,表示出P坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E坐标代入即可得到m与n的关系式,利用三角形相似即可得证;(3)①当E与原点重合时,把A与E坐标代入,整理即可得到a,b,m的关系式;②抛物线与四边形ABCD有公共点,可得出抛物线过点C时的开口最大,过点A时的开口
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中秋节习俗探究
- 专业国际贸易居间协议范本(2024版)
- 2025年度数据中心场地租赁及设施升级维护合同4篇
- 2025年度插班生入校社会实践协议范本4篇
- 2025年度建筑安全施工安全监督检验合同范本3篇
- 专项协议:2024版研究报告服务条款版A版
- 2025年度产业园租赁及产业技术创新合同4篇
- 二零二四年事业单位工程技术岗位劳动合同(含技术培训)3篇
- 2025年叉车租赁服务与技术支持合同4篇
- 2024油漆涂料仓库租赁与管理合同
- 2024版智慧电力解决方案(智能电网解决方案)
- 公司SWOT分析表模板
- 小学预防流行性感冒应急预案
- 肺癌术后出血的观察及护理
- 生物医药大数据分析平台建设-第1篇
- 基于Android的天气预报系统的设计与实现
- 冲锋舟驾驶培训课件
- 美术家协会会员申请表
- 聚合收款服务流程
- 中石化浙江石油分公司中石化温州灵昆油库及配套工程项目环境影响报告书
- 搞笑朗诵我爱上班台词
评论
0/150
提交评论