版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省南安市达标名校2021-2022学年中考联考数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.把多项式ax3﹣2ax2+ax分解因式,结果正确的是()A.ax(x2﹣2x) B.ax2(x﹣2)C.ax(x+1)(x﹣1) D.ax(x﹣1)22.小文同学统计了某栋居民楼中全体居民每周使用手机支付的次数,并绘制了直方图.根据图中信息,下列说法:①这栋居民楼共有居民140人②每周使用手机支付次数为28~35次的人数最多③有的人每周使用手机支付的次数在35~42次④每周使用手机支付不超过21次的有15人其中正确的是()A.①② B.②③ C.③④ D.④3.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13 B.11或13 C.11 D.124.用配方法解下列方程时,配方有错误的是()A.化为 B.化为C.化为 D.化为5.方程2x+3=1A.x=3 B.x=4 C.x=5 D.x=﹣56.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤线段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④7.估计﹣2的值应该在()A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间8.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是()A.3 B. C. D.9.已知,则的值是A.60 B.64 C.66 D.7210.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是(
)A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x2二、填空题(共7小题,每小题3分,满分21分)11.因式分解:9a3b﹣ab=_____.12.如图,在扇形OAB中,∠O=60°,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,,OB上,则图中阴影部分的面积为__________.13.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是_____.14.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A落在矩形ABCD的边CD上,连接CE,则CE的长是________.15.规定用符号表示一个实数的整数部分,例如:,.按此规定,的值为________.16.如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为____.17.因式分解:9a2﹣12a+4=______.三、解答题(共7小题,满分69分)18.(10分)计算:﹣4cos45°+()﹣1+|﹣2|.19.(5分)已知关于的二次函数(1)当时,求该函数图像的顶点坐标.(2)在(1)条件下,为该函数图像上的一点,若关于原点的对称点也落在该函数图像上,求的值(3)当函数的图像经过点(1,0)时,若是该函数图像上的两点,试比较与的大小.20.(8分)阅读下列材料:题目:如图,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,请用sinA、cosA表示sin2A.21.(10分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:上表中众数m的值为;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.22.(10分)已知:如图所示,在中,,,求和的度数.23.(12分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.24.(14分)综合与探究如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:①当点G与点D重合时,求平移距离m的值;②用含x的式子表示平移距离m,并求m的最大值;(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】
先提取公因式ax,再根据完全平方公式把x2﹣2x+1继续分解即可.【详解】原式=ax(x2﹣2x+1)=ax(x﹣1)2,故选D.【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法.因式分解必须分解到每个因式都不能再分解为止.2、B【解析】
根据直方图表示的意义求得统计的总人数,以及每组的人数即可判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解.【详解】解:①这栋居民楼共有居民3+10+15+22+30+25+20=125人,此结论错误;②每周使用手机支付次数为28~35次的人数最多,此结论正确;③每周使用手机支付的次数在35~42次所占比例为,此结论正确;④每周使用手机支付不超过21次的有3+10+15=28人,此结论错误;故选:B.【点睛】此题考查直方图的意义,解题的关键在于理解直方图表示的意义求得统计的数据3、B【解析】试题解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3为底边,5为腰时,三边长分别为3,5,5,周长为3+5+5=1;若3为腰,5为底边时,三边长分别为3,3,5,周长为3+3+5=11,综上,△ABC的周长为11或1.故选B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.4、B【解析】
配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:、,,,,故选项正确.、,,,,故选项错误.、,,,,,故选项正确.、,,,,.故选项正确.故选:.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5、C【解析】方程两边同乘(x-1)(x+3),得x+3-2(x-1)=0,解得:x=5,检验:当x=5时,(x-1)(x+3)≠0,所以x=5是原方程的解,故选C.6、B【解析】
首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=1-1.无法证明DH平分∠EHG,故②错误,故①③④⑤正确.故选B.【点睛】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.7、A【解析】
直接利用已知无理数得出的取值范围,进而得出答案.【详解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之间.故选A.【点睛】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.8、A【解析】根据锐角三角函数的性质,可知cosA==,然后根据AC=2,解方程可求得AB=3.故选A.点睛:此题主要考查了解直角三角形,解题关键是明确直角三角形中,余弦值cosA=,然后带入数值即可求解.9、A【解析】
将代入原式,计算可得.【详解】解:当时,原式,故选A.【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.10、D【解析】分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;D、y=3x2的图象平移不能得到y=2x2,故本选项正确.故选D.二、填空题(共7小题,每小题3分,满分21分)11、ab(3a+1)(3a-1).【解析】试题分析:原式提取公因式后,利用平方差公式分解即可.试题解析:原式=ab(9a2-1)=ab(3a+1)(3a-1).考点:提公因式法与公式法的综合运用.12、8π﹣8【解析】
连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可.【详解】连接EF、OC交于点H,则OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面积=×4×4=8,扇形OAB的面积==8π,则阴影部分的面积为8π﹣8,故答案为8π﹣8.【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.13、(3,2).【解析】
根据题意得出y轴位置,进而利用正多边形的性质得出E点坐标.【详解】解:如图所示:∵A(0,a),∴点A在y轴上,∵C,D的坐标分别是(b,m),(c,m),∴B,E点关于y轴对称,∵B的坐标是:(﹣3,2),∴点E的坐标是:(3,2).故答案为:(3,2).【点睛】此题主要考查了正多边形和圆,正确得出y轴的位置是解题关键.14、【解析】
解:连接AG,由旋转变换的性质可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,则AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案为.【点睛】本题考查的是旋转变换的性质、相似三角形的判定和性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.15、4【解析】
根据规定,取的整数部分即可.【详解】∵,∴∴整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.16、8【解析】试题解析:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,∴∠BAF=∠F,∴∠F=∠DAF,∴△ADF是等腰三角形,AD=DF=9;∵AD∥BC,∴△EFC是等腰三角形,且FC=CE.∴EC=FC=9-6=3,∴AB=BE.∴在△ABG中,BG⊥AE,AB=6,BG=4可得:AG=2,又∵BG⊥AE,∴AE=2AG=4,∴△ABE的周长等于16,又∵▱ABCD,∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为817、(3a﹣1)1【解析】
直接利用完全平方公式分解因式得出答案.【详解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.三、解答题(共7小题,满分69分)18、4【解析】分析:代入45°角的余弦函数值,结合“负整数指数幂的意义”和“二次根式的相关运算法则”进行计算即可.详解:原式=.点睛:熟记“特殊角的三角函数值、负整数指数幂的意义:(为正整数)”是正确解答本题的关键.19、(1),顶点坐标(1,-4);(2)m=1;(3)①当a>0时,y2>y1,②当a<0时,y1>y2.【解析】试题分析:(1)把a=2,b=4代入并配方,即可求出此时二次函数图象的顶点坐标;(2)由题意把(m,t)和(-m,-t)代入(1)中所得函数的解析式,解方程组即可求得m的值;(3)把点(1,0)代入可得b=a-2,由此可得抛物线的对称轴为直线:,再分a>0和a<0两种情况分别讨论即可y1和y2的大小关系了.试题解析:(1)把a=2,b=4代入得:,∴此时二次函数的图象的顶点坐标为(1,-4);(2)由题意,把(m,t)和(-m,-t)代入得:①,②,由①+②得:,解得:;(3)把点(1,0)代入得a-b-2=0,∴b=a-2,∴此时该二次函数图象的对称轴为直线:,①当a>0时,,,∵此时,且抛物线开口向上,∴中,点B距离对称轴更远,∴y1<y2;②当a<0时,,,∵此时,且抛物线开口向下,∴中,点B距离对称轴更远,∴y1>y2;综上所述,当a>0时,y1<y2;当a<0时,y1>y2.点睛:在抛物线上:(1)当抛物线开口向上时,抛物线上的点到对称轴的距离越远,所对应的函数值就越大;(2)当抛物线开口向下时,抛物线上的点到对称轴的距离越近,所对应的函数值就越大;20、sin2A=2cosAsinA【解析】
先作出直角三角形的斜边的中线,进而求出,∠CED=2∠A,最后用三角函数的定义即可得出结论【详解】解:如图,作Rt△ABC的斜边AB上的中线CE,则∴∠CED=2∠A,过点C作CD⊥AB于D,在Rt△ACD中,CD=ACsinA,在Rt△ABC中,AC=ABcosA=cosA在Rt△CED中,sin2A=sin∠CED==2ACsinA=2cosAsinA【点睛】此题主要解直角三角形,锐角三角函数的定义,直角三角形的斜边的中线等于斜边的一半,构造出直角三角形和∠CED=2∠A是解本题的关键.21、(1)18;(2)中位数;(3)100名.【解析】【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【详解】(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×=100(名),答:该部门生产能手有100名工人.【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.22、,.【解析】
根据等腰三角形的性质即可求出∠B,再根据三角形外角定理即可求出∠C.【详解】在中,,∵,在三角形中,,又∵,在三角形中,∴.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.23、(1);(2)点P的坐标是(0,4)或(0,-4).【解析】
(1)求出OA=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.【详解】(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2.将y=2代入3得:x=2,∴M(2,2).把M的坐标代入得:k=4,∴反比例函数的解析式是;(2).∵△OPM的面积与四边形BMON的面积相等,∴.∵AM=2,∴OP=4.∴点P的坐标是(0,4)或(0,-4).24、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐标为(﹣3,0)或(﹣3,).【解析】
(3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标,再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物料收集与输送课程设计
- 氯甲烷储罐课程设计
- 游子吟音乐课程设计
- 机械设计课程设计步骤
- 称重控制课程设计
- 果林隧道课程设计
- 2024年度车辆购置担保协议合同3篇
- 电子门铃课程设计心得
- 2024年旅游服务合同的景点与行程规定
- 2024年影视产业投资借款合同范本模板3篇
- 北京市东城区2023-2024学年数学三年级第一学期期末综合测试试题含答案
- 贵州省遵义市播州区2023-2024学年四年级数学第一学期期末监测试题含答案
- 氢能与燃料电池电动汽车第5章 氢与燃料电池
- 车床液压系统设计与计算
- 徒手整形教学课件
- 西方思想经典-南京大学中国大学mooc课后章节答案期末考试题库2023年
- 跨平台移动应用开发-Flutter实践-南京师范大学泰州学院中国大学mooc课后章节答案期末考试题库2023年
- 文化资源数字化技术有哪些
- 2023年杭州联合银行校园招聘笔试历年高频考点试题答案详解
- 灌装轧盖机和供瓶机设备验证方案
- 瓦楞纸箱工艺流程演示文稿
评论
0/150
提交评论