版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年黑龙江省安达市吉星岗镇第一中学中考押题数学预测卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A. B. C. D.2.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是()A.B.C.D.3.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或104.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.65.如图所示的几何体的主视图是()A. B. C. D.6.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么()A.20° B.40° C.60° D.80°7.对于有理数x、y定义一种运算“Δ”:xΔy=ax+by+c,其中a、b、c为常数,等式右边是通常的加法与乘法运算,已知3Δ5=15,4Δ7=28,则1Δ1的值为()A.-1 B.-11 C.1 D.118.在平面直角坐标系xOy中,将点N(–1,–2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2) B.(–1,2)C.(–1,–2) D.(1,–2)9.若一个多边形的内角和为360°,则这个多边形的边数是(
)A.3
B.4
C.5
D.610.如图,l1∥l2,AF:FB=3:5,BC:CD=3:2,则AE:EC=()A.5:2 B.4:3 C.2:1 D.3:2二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于_____.12.不等式组的解集为____.13.用一张扇形纸片围成一个圆锥的侧面(接缝处不计),若这个扇形纸片的面积是90πcm2,围成的圆锥的底面半径为15cm,则这个圆锥的母线长为_____cm.14.如图,身高是1.6m的某同学直立于旗杆影子的顶端处,测得同一时刻该同学和旗杆的影子长分别为1.2m和9m.则旗杆的高度为________m.15.每一层三角形的个数与层数的关系如图所示,则第2019层的三角形个数为_____.16.关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根,则m的取值范围是_____.三、解答题(共8题,共72分)17.(8分)如图,在一条河的北岸有两个目标M、N,现在位于它的对岸设定两个观测点A、B.已知AB∥MN,在A点测得∠MAB=60°,在B点测得∠MBA=45°,AB=600米.(1)求点M到AB的距离;(结果保留根号)(2)在B点又测得∠NBA=53°,求MN的长.(结果精确到1米)(参考数据:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)18.(8分)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.1°,∠PBA=26.1.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.1°=0.62,cos38.1°=0.78,tan38.1°=0.80,sin26.1°=0.41,cos26.1°=0.89,tan26.1°=0.10)19.(8分)如图,△ABC中,点D在边AB上,满足∠ACD=∠ABC,若AC=,AD=1,求DB的长.20.(8分)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B的“确定圆”.如图为点A,B的“确定圆”的示意图.(1)已知点A的坐标为(-1,0),点B的坐标为(3,3),则点A,B的“确定圆”的面积为______;(2)已知点A的坐标为(0,0),若直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;(3)已知点A在以P(m,0)为圆心,以1为半径的圆上,点B在直线上,若要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.21.(8分)如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求△BCE的面积最大值.22.(10分)如图,在平面直角坐标系中,四边形的顶点是坐标原点,点在第一象限,点在第四象限,点在轴的正半轴上,且.(1)求点和点的坐标;(2)点是线段上的一个动点(点不与点重合),以每秒个单位的速度由点向点运动,过点的直线与轴平行,直线交边或边于点,交边或边于点,设点.运动时间为,线段的长度为,已知时,直线恰好过点.①当时,求关于的函数关系式;②点出发时点也从点出发,以每秒个单位的速度向点运动,点停止时点也停止.设的面积为,求与的函数关系式;③直接写出②中的最大值是.23.(12分)如图,在平面直角坐标系xOy中,函数的图象与直线y=2x+1交于点A(1,m).(1)求k、m的值;(2)已知点P(n,0)(n≥1),过点P作平行于y轴的直线,交直线y=2x+1于点B,交函数的图象于点C.横、纵坐标都是整数的点叫做整点.①当n=3时,求线段AB上的整点个数;②若的图象在点A、C之间的部分与线段AB、BC所围成的区域内(包括边界)恰有5个整点,直接写出n的取值范围.24.如图1,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A、C分别在DG和DE上,连接AE,BG.试猜想线段BG和AE的数量关系是_____;将正方形DEFG绕点D逆时针方向旋转α(0°<α≤360°),①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若BC=DE=4,当AE取最大值时,求AF的值.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】
先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,
后面一排分别有2个、3个、1个小正方体搭成三个长方体,
并且这两排右齐,故从正面看到的视图为:.
故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.2、D【解析】试题分析:俯视图是从上面看到的图形.从上面看,左边和中间都是2个正方形,右上角是1个正方形,故选D.考点:简单组合体的三视图3、B【解析】试题分析:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=1.①当1是腰时,2是底边,此时周长=1+1+2=2;②当1是底边时,2是腰,2+2<1,不能构成三角形.所以它的周长是2.考点:解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.4、C【解析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.5、C【解析】
主视图就是从正面看,看列数和每一列的个数.【详解】解:由图可知,主视图如下故选C.【点睛】考核知识点:组合体的三视图.6、C【解析】
根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.【详解】∵,,∴,∵,∴,∵,∴,故选C.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.7、B【解析】
先由运算的定义,写出3△5=25,4△7=28,得到关于a、b、c的方程组,用含c的代数式表示出a、b.代入2△2求出值.【详解】由规定的运算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解这个方程组,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故选B.【点睛】本题考查了新运算、三元一次方程组的解法.解决本题的关键是根据新运算的意义,正确的写出3△5=25,4△7=28,2△2.8、A【解析】
根据点N(–1,–2)绕点O旋转180°,所得到的对应点与点N关于原点中心对称求解即可.【详解】∵将点N(–1,–2)绕点O旋转180°,∴得到的对应点与点N关于原点中心对称,∵点N(–1,–2),∴得到的对应点的坐标是(1,2).故选A.【点睛】本题考查了旋转的性质,由旋转的性质得到的对应点与点N关于原点中心对称是解答本题的关键.9、B【解析】
利用多边形的内角和公式求出n即可.【详解】由题意得:(n-2)×180°=360°,解得n=4;故答案为:B.【点睛】本题考查多边形的内角和,解题关键在于熟练掌握公式.10、D【解析】
依据平行线分线段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根据平行线分线段成比例定理,即可得出AE与EC的比值.【详解】∵l1∥l2,∴,设AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故选D.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.二、填空题(本大题共6个小题,每小题3分,共18分)11、2【解析】
根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【详解】由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=2,∴AE=2.故答案为2.【点睛】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12、x>1【解析】
分别解出两不等式的解集再求其公共解.【详解】由①得:x>1
由②得:x>∴不等式组的解集是x>1.【点睛】求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.13、1【解析】
设这个圆锥的母线长为xcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•15•x=90π,然后解方程即可.【详解】解:设这个圆锥的母线长为xcm,根据题意得•2π•15•x=90π,解得x=1,即这个圆锥的母线长为1cm.故答案为1.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14、1【解析】试题分析:利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度即可.解:∵同一时刻物高与影长成正比例.设旗杆的高是xm.∴1.6:1.2=x:9∴x=1.即旗杆的高是1米.故答案为1.考点:相似三角形的应用.15、2.【解析】
设第n层有an个三角形(n为正整数),根据前几层三角形个数的变化,即可得出变化规律“an=2n﹣2”,再代入n=2029即可求出结论.【详解】设第n层有an个三角形(n为正整数),∵a2=2,a2=2+2=3,a3=2×2+2=5,a4=2×3+2=7,…,∴an=2(n﹣2)+2=2n﹣2.∴当n=2029时,a2029=2×2029﹣2=2.故答案为2.【点睛】本题考查了规律型:图形的变化类,根据图形中三角形个数的变化找出变化规律“an=2n﹣2”是解题的关键.16、m≤1【解析】
根据一元二次方程有实数根,得出△≥0,建立关于m的不等式,求出m的取值范围即可.【详解】解:由题意知,△=4﹣4(m﹣1)≥0,∴m≤1,故答案为:m≤1.【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0,方程有两个不相等的实数根;△=0,方程有两个相等的实数根;△<0,方程没有实数根是本题的关键.三、解答题(共8题,共72分)17、(1);(2)95m.【解析】
(1)过点M作MD⊥AB于点D,易求AD的长,再由BD=MD可得BD的长,即M到AB的距离;
(2)过点N作NE⊥AB于点E,易证四边形MDEN为平行四边形,所以ME的长可求出,再根据MN=AB-AD-BE计算即可.【详解】解:(1)过点M作MD⊥AB于点D,∵MD⊥AB,∴∠MDA=∠MDB=90°,∵∠MAB=60°,∠MBA=45°,∴在Rt△ADM中,;在Rt△BDM中,,∴BD=MD=,∵AB=600m,∴AD+BD=600m,∴AD+,∴AD=(300)m,∴BD=MD=(900-300),∴点M到AB的距离(900-300).(2)过点N作NE⊥AB于点E,∵MD⊥AB,NE⊥AB,∴MD∥NE,∵AB∥MN,∴四边形MDEN为平行四边形,∴NE=MD=(900-300),MN=DE,∵∠NBA=53°,∴在Rt△NEB中,,∴BEm,∴MN=AB-AD-BE.【点睛】考查了解直角三角形的应用,通过解直角三角形能解决实际问题中的很多有关测量问题,根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案是解题的关键.18、49.2米【解析】
设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.【详解】解:设PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°.在Rt△PAD中,,∴.在Rt△PBD中,,∴.又∵AB=80.0米,∴,解得:x≈24.6,即PD≈24.6米.∴DB=2x=49.2米.答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.19、BD=2.【解析】
试题分析:根据∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性质得出AB的长,从而求出DB的长.试题解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD,∴,∵AC=,AD=1,∴,∴AB=3,∴BD=AB﹣AD=3﹣1=2.点睛:本题主要考查了相似三角形的判定以及相似三角形的性质,利用相似三角形的性质求出AB的长是解题关键.20、(1)25π;(2)点B的坐标为或;(3)m≤-5或m≥2【解析】
(1)根据勾股定理,可得AB的长,根据圆的面积公式,可得答案;(2)根据确定圆,可得l与⊙A相切,根据圆的面积,可得AB的长为3,根据等腰直角三角形的性质,可得,可得答案;(3)根据圆心与直线垂直时圆心到直线的距离最短,根据确定圆的面积,可得PB的长,再根据30°的直角边等于斜边的一半,可得CA的长.【详解】(1)(1)∵A的坐标为(−1,0),B的坐标为(3,3),∴AB==5,根据题意得点A,B的“确定圆”半径为5,∴S圆=π×52=25π.故答案为25π;(2)∵直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,∴⊙A的半径AB=3且直线y=x+b与⊙A相切于点B,如图,∴AB⊥CD,∠DCA=45°.,①当b>0时,则点B在第二象限.过点B作BE⊥x轴于点E,∵在Rt△BEA中,∠BAE=45°,AB=3,∴.∴.②当b<0时,则点B'在第四象限.同理可得.综上所述,点B的坐标为或.(3)如图2,,直线当y=0时,x=3,即C(3,0).∵tan∠BCP=,∴∠BCP=30°,∴PC=2PB.P到直线的距离最小是PB=4,∴PC=1.3-1=-5,P1(-5,0),3+1=2,P(2,0),当m≤-5或m≥2时,PD的距离大于或等于4,点A,B的“确定圆”的面积都不小于9π.点A,B的“确定圆”的面积都不小于9π,m的范围是m≤-5或m≥2.【点睛】本题考查了一次函数综合题,解(1)的关键是利用勾股定理得出AB的长;解(2)的关键是等腰直角三角形的性质得出;解(3)的关键是利用30°的直角边等于斜边的一半得出PC=2PB.21、(1)y=﹣x2+2x+1.(2)2≤Ey<2.(1)当m=1.5时,S△BCE有最大值,S△BCE的最大值=.【解析】分析:(1)1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0<m<1即可求解;(1)连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.详解:(1)∵抛物线过点A(1,0)和B(1,0)(2)∵∴点C为线段DE中点设点E(a,b)∵0<m<1,∴当m=1时,纵坐标最小值为2当m=1时,最大值为2∴点E纵坐标的范围为(1)连结BD,过点D作x轴的垂线交BC于点H∵CE=CD∴H(m,-m+1)∴当m=1.5时,.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.22、(1);(2)①;②当时,;当时,;当时,;③.【解析】
(1)根据等腰直角三角形的性质即可解决问题;(2)首先求出直线OA、AB、OC、BC的解析式.①求出R、Q的坐标,利用两点间距离公式即可解决问题;②分三种情形分别求解即可解决问题;③利用②中的函数,利用配方法求出最值即可;【详解】解:(1)由题意是等腰直角三角形,(2),线直的解析式为,直线的解析式时,直线恰好过点.,直线的解析式为,直线的解析式为①当时,,②当时,当时,当时,③当时,,时,的最大值为.当时,.时,的值最大,最大值为.当时,,时,的最大值为,综上所述,最大值为故答案为.【点睛】本题考查四边形综合题、一次函数的应用、二次函数的应用、等腰直角三角形的性质等知识,解题的关键是学会构建一次函数或二次函数解决实际问题,属于中考压轴题.23、(1)m=3,k=3;(2)①线段AB上有(1,3)、(2,5)、(3,7)共3个整点,②当2≤n<3时,有五个整点.【解析】
(1)将A点代入直线解析式可求m,再代入,可求k.(2)①根据题意先求B,C两点,可得线段AB上的整点的横坐标的范围1≤x≤3,且x为整数,所以x取1,2,3.再代入可求整点,即求出整点个数.②根据图象可以直接判断2≤n<3.【详解】(1)∵点A(1,m)在y=2x+1上,∴m=2×1+1=3.∴A(1,3).∵点A(1,3)在函数的图象上,∴k=3.(2)①当n=3时,B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民间借款展期合同范本
- 服装设计招标南航寻找创意人才
- 出口木柴销售协议
- 来料加工合同版协议
- 合伙协议合同合作方合作方利益
- 安全顾问咨询招标
- 下骨架工的施工内容和流程
- 2024按揭购车合同范本
- 2024标准企业集体合同
- 塑料制品在玻璃印刷上的应用考核试卷
- 《一年级大个子二年级小个子-》指导课件
- 小学道德与法治 五年级上册 传统美德源远流长 天下兴亡 匹夫有责的爱国情怀 教学设计
- 日本侵华简史
- 某蔬菜大棚钢结构施工组织设计
- 企业管理基础完整版课件全套ppt最全电子教案整书教案教学设计教学教程
- 修井机电控系统系统操作手册范本
- 人教版八年级上册 Unit 1 Where did you go on vacation- Section A(1a-2d)说课稿
- 感染科疾病诊疗常规(共22页)
- 心理与行为问题评估(四个常用的他评量表)
- 化学发光原理及应用PPT课件
- 管道焊接质量控制ppt课件
评论
0/150
提交评论