![高中数学说课稿《正弦定理》【6篇】_第1页](http://file4.renrendoc.com/view2/M00/39/3A/wKhkFmZYhHOAJ8eMAAIjXp77b8Q327.jpg)
![高中数学说课稿《正弦定理》【6篇】_第2页](http://file4.renrendoc.com/view2/M00/39/3A/wKhkFmZYhHOAJ8eMAAIjXp77b8Q3272.jpg)
![高中数学说课稿《正弦定理》【6篇】_第3页](http://file4.renrendoc.com/view2/M00/39/3A/wKhkFmZYhHOAJ8eMAAIjXp77b8Q3273.jpg)
![高中数学说课稿《正弦定理》【6篇】_第4页](http://file4.renrendoc.com/view2/M00/39/3A/wKhkFmZYhHOAJ8eMAAIjXp77b8Q3274.jpg)
![高中数学说课稿《正弦定理》【6篇】_第5页](http://file4.renrendoc.com/view2/M00/39/3A/wKhkFmZYhHOAJ8eMAAIjXp77b8Q3275.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学说课稿《正弦定理》【6篇】高中数学说课稿《正弦定理》篇一一、教材分析1.教材地位和作用在初中,学生已经学习了三角形的边和角的基本关系;同时在必修4,学生也学习了三角函数、平面向量等内容。这些为学生学习正弦定理提供了坚实的基础。正弦定理是初中解直角三角形的延伸,是揭示三角形边、角之间数量关系的重要公式,本节内容同时又是学生学习解三角形,几何计算等后续知识的基础,而且在物理学等其它学科、工业生产以及日常生活等常常涉及解三角形的问题。依据教材的上述地位和作用,我确定如下教学目标和重难点2.教学目标(1)知识目标:①引导学生发现正弦定理的内容,探索证明正弦定理的方法;②简单运用正弦定理解三角形、初步解决某些与测量和几何计算有关的实际问题。(2)能力目标:①通过对直角三角形边角数量关系的研究,发现正弦定理,体验用特殊到一般的思想方法发现数学规律的过程。②在利用正弦定理来解三角形的过程中,逐步培养应用数学知识来解决社会实际问题的能力。(3)情感目标:通过设立问题情境,激发学生的学习动机和好奇心理,使其主动参与双边交流活动。通过对问题的提出、思考、解决培养学生自信、自立的优良心理品质。通过教师对例题的讲解培养学生良好的学习习惯及科学的学习态度。3.教学的重﹑难点教学重点:正弦定理的内容,正弦定理的证明及基本应用;教学难点:正弦定理的`探索及证明;教学中为了达到上述目标,突破上述重难点,我将采用如下的教学方法与手段二、教学方法与手段1.教学方法教学过程中以教师为主导,学生为主体,创设和谐、愉悦教学环境。根据本节课内容和学生认知水平,我主要采用启导法、感性体验法、多媒体辅助教学。2.学法指导学情调动:学生在初中已获得了直角三角形边角关系的初步知识,正因如此学生在心理上会提出如何解决斜三角形边角关系的疑问。学法指导:指导学生掌握“观察——猜想——证明——应用”这一思维方法,让学生在问题情景中学习,再通过对实例进行具体分析,进而观察归纳、演练巩固,由具体到抽象,逐步实现对新知识的理解深化。3.教学手段利用多媒体展示片,极大的吸引学生的注意力,活跃课堂气氛,调动学生参与解决问题的积极性。为了提高课堂效率,便于学生动手练习,我把本节课的例题、课堂练习制作成一张习题纸,课前发给学生。下面我讲解如何运用上述教学方法和手段开展教学过程三、教学过程设计教学流程:引出课题引出新知归纳方法巩固新知布置作业四、总结分析:现代教育心理学的研究认为,有效的性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了:㈠在学生已有知识结构和新性质概念间寻找“最近发展区”.㈡引导学生通过同化,顺应掌握新概念。㈢设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程”的新天地。我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合﹑学用结合”原则。希望对学生的思维品质的培养﹑数学思想的建立﹑心理品质的优化起到良好的作用.设计意:我的板书设计的指导原则:简明直观,重点突出。本节课的板书教学重点放在黑板的正中间,为了能加深学生对正弦定理以及其应用的认识,把例题放在中间,以期全班同学都能看得到。谢谢!余弦定理说课稿篇二一、教材分析:(说教材)《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:1)、已知两边及其夹角,求第三边和其他两个角。2)、已知三边求三个内角;3)、判断三角形的形状。以及相关的证明题。二、说教学思路本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。三、说教法在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。1、任务驱动法教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。2、引导发现法、观察法通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。3、归纳总结法学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。4、讲练结合法讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。四、说学法学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。五、教学目标(一)知识目标1、使学生掌握余弦定理及其证明。2、使学生初步掌握应用余弦定理解斜三角形。(二)能力目标1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。(三)德育目标1、培养学生的爱国主义精神、及团结、协作精神。2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。六、教学重点教学重点是余弦定理及应用余弦定理解斜三角形;七、教学难点分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。八、教学过程教学中注重突出重点、突破难点,从五个层次进行教学。创设情境、任务驱动;引导探究、发现定理;完成任务、应用迁移;拓展升华、交流反思;小结归纳、布置作业。(一)、导入1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。(二)、新课1、证明猜想,导出余弦定理及余弦定理的变形经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。2、解决二个任务3、操作演练,巩固提高。4、小结:通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。5、作业:分层布置作业,根据不同层次学生将作业分为必做题和选做题。使不同程度的学生都有所提高。九、板书设计板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。十、课后反思在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。《余弦定理》说课稿篇三一、说教材《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:1、已知两边及其夹角,求第三边和其他两个角。2、已知三边求三个内角;3、判断三角形的形状。以及相关的证明题。二、说教学思路本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国主义题材,学生在完成知识学习的同时,也极大的激发了爱国主义精神。三、说教法在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学手段把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教手段使用多媒体辅助教学。1、任务驱动法教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国主义精神。2、引导发现法、观察法通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。3、归纳总结法学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。4、讲练结合法讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。四、说学法学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。五、教学目标(一)知识目标1、使学生掌握余弦定理及其证明。2、使学生初步掌握应用余弦定理解斜三角形。(二)能力目标1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。(三)德育目标1、培养学生的爱国主义精神、及团结、协作精神。2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证统一。六、教学重点教学重点是余弦定理及应用余弦定理解斜三角形;七、教学难点分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。
八、教学过程教学中注重突出重点、突破难点,从五个层次进行教学。创设情境、任务驱动;引导探究、发现定理;完成任务、应用迁移;拓展升华、交流反思;九、说过程。(一)导入1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。2、通过与直角三角形勾股定理引出余弦定理(快乐起点)经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。(二)新课3、证明猜想,导出余弦定理及余弦定理的变形经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。4、解决二个任务5、操作演练,巩固提高。6、小结:通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。7、作业:分层布置作业,根据不同层次学生将作业分为必做题和选做题。使不同程度的学生都有所提高十、板书设计板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。十一、课后反思在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。余弦定理说课稿篇四各位老师大家好!今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析。教学目标的确定。教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。一、教材分析本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。二、教学目标的确定基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:1、知识与技能:熟练掌握余弦定理的内容及公式,能初步应用余弦定理解决一些有关三角形边角计算的问题;2、过程与方法:掌握余弦定理的两种证明方法,通过探究余弦定理的过程学会分析问题从特殊到一般的过程与方法,提高运用已有知识分析、解决问题的能力;3、情感态度与价值观:在探究余弦定理的过程中培养学生探索精神和创新意识,形成严谨的数学思维方式,培养用数学观点解决问题的能力和意识、三、教学方法的选择基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。四、教学过程的设计为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:1、创设情境,引入课题利用多媒体引出如下问题:A地和B地之间隔着一个水塘现选择一地点C,可以测得的大小及,求A、B两地之间的距离c。【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。2、探索研究、构建新知(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形()时考虑。此时使用勾股定理,得。(2)从直角三角形这一特殊情况出发,引导学生在一般三角形中构造直角即作边的高,从而在构造的直角三角形中利用勾股定理列出边之间的等式关系、(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形()中。通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。【设计意图】通过创设情景、引导学生探究出余弦定理这一数学体验,既可以培养学生分析问题的能力,也可以加深学生对余弦定理的认识、在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。根据余弦定理的。两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:(1)已知三边,求三个角;(2)已知三角形两边及其夹角,求第三边和其他两个角。3、例题讲解、巩固练习本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。例题讲解:例1在中,(1)已知,求;(2)已知,求。【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。例2对于例题1(2),求的大小。【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。例3使用余弦定理证明:在中,当为锐角时;当为钝角时,【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的推广”这一思想,进一步加深了对余弦定理的认识和理解。课堂练习:练习1在中,(1)已知,求;(2)已知,求。【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。练习2若三条线段长分别为5,6,7,则用这三条线段()。A、能组成直角三角形B、能组成锐角三角形C、能组成钝角三角形D、不能组成三角形【设计意图】与例题3相呼应。练习3在中,已知,试求的大小。【设计意图】要求灵活使用公式,对公式进行变形。4、课堂小结,布置作业先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:(1)余弦定理的内容和公式;(2)余弦定理实质上是勾股定理的推广;(3)余弦定理的可以解决的两类解斜三角形的问题。通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。布置作业必做题:习题1、2、1、2、3、5、6;选做题:习题1、2、12、13。【设计意图】作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。高中数学说课稿《正弦定理》篇五一、教材地位与作用本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。二、学情分析作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。教学重点:正弦定理的内容,正弦定理的证明及基本应用。教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标教学目标分析:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。能力目标:探索正弦定理的证明过程,用归纳法得出结论。情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。三、教法学法分析教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。四、教学过程(一)创设情境,布疑激趣“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。(二)探寻特例,提出猜想1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。3.让学生总结实验结果,得出猜想:在三角形中,角与所对的边满足关系这为下一步证明树立信心,不断的使学生对结论的`认识从感性逐步上升到理性。(三)逻辑推理,证明猜想1.强调将猜想转化为定理,需要严格的理论证明。2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。(四)归纳总结,简单应用1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。(五)讲解例题,巩固定理1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。(六)课堂练习,提高巩固1.在△ABC中,已知下列条件,解三角形。(1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm2.在△ABC中,已知下列条件,解三角形。(1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°学生板演,老师巡视,及时发现问题,并解答。(七)小结反思,提高认识通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?1.用向量证明了正弦定理,体现了数形结合的数学思想。2.它表述了三角形的边与对角的正弦值的关系。3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。(从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)(八)任务后延,自主探究如果已知一个三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《战略品牌传播》课件
- 《CI操作常用》课件
- owerPoint幻灯片课件制作技术
- 感受情节背后的性格逻辑
- 游学项目介绍会模板
- 游戏产品与服务介绍模板
- 银行业RPA实践报告模板
- 市场营销模式的实效性探析论文
- 家庭医生签约与非签约居民卫生服务利用差异
- 车速鉴定申请书
- 课题申报参考:社会网络视角下村改居社区公共空间优化与“土客关系”重构研究
- 如何管理好一家公寓
- 2025年八省联考高考语文试题真题解读及答案详解课件
- 《山东胶州秧歌》课件
- 《仓库安全管理培训》课件
- 术前准备与术后护理指南
- GB/T 44963-2024储粮保水技术规范
- 定密培训课件
- 复工复产前专项辨识评估报告
- 农产品食品检验员(高级)职业技能鉴定考试题及答案
- 呛咳患者的护理
评论
0/150
提交评论