2022年江西省赣州市南康区中考数学模拟试题含解析_第1页
2022年江西省赣州市南康区中考数学模拟试题含解析_第2页
2022年江西省赣州市南康区中考数学模拟试题含解析_第3页
2022年江西省赣州市南康区中考数学模拟试题含解析_第4页
2022年江西省赣州市南康区中考数学模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年江西省赣州市南康区中考数学模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则y1>y1.其中正确的结论有()A.1个 B.3个 C.4个 D.5个2.已知3x+y=6,则xy的最大值为()A.2 B.3 C.4 D.63.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A. B. C. D.4.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是()A. B. C. D.5.如图所示,从☉O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC,已知∠A=26°,则∠ACB的度数为()A.32° B.30° C.26° D.13°6.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值()A.总不小于1B.总不小于11C.可为任何实数D.可能为负数7.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.188.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为().A. B. C. D.9.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为65下列选项中,描述准确的是()A.①②正确,③错误 B.①③正确,②错误C.②③正确,①错误 D.①②③都正确10.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣5二、填空题(本大题共6个小题,每小题3分,共18分)11.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)如果设水深为x尺,则芦苇长用含x的代数式可表示为尺,根据题意列方程为.12.已知代数式2x﹣y的值是,则代数式﹣6x+3y﹣1的值是_____.13.在△ABC中,∠C=30°,∠A﹣∠B=30°,则∠A=_____.14.分解因式:x2y﹣xy2=_____.15.在△ABC中,若∠A,∠B满足|cosA-|+(sinB-)2=0,则∠C=_________.16.如图,二次函数y=ax2+bx+c(a≠0)的图象与轴相交于点A、B,若其对称轴为直线x=2,则OB–OA的值为_______.三、解答题(共8题,共72分)17.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球有个,若从中随机摸出一个球,这个球是白球的概率为.()请直接写出袋子中白球的个数.()随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)18.(8分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型ABABO人数105(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?19.(8分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.20.(8分)如图,在矩形ABCD的外侧,作等边三角形ADE,连结BE,CE,求证:BE=CE.21.(8分)先化简,再求值:(x﹣3)÷(﹣1),其中x=﹣1.22.(10分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.(1)如图1,连接AB′.①若△AEB′为等边三角形,则∠BEF等于多少度.②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.(2)如图2,连接CB′,求△CB′F周长的最小值.(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.23.(12分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.24.如图,在锐角△ABC中,小明进行了如下的尺规作图:①分别以点A、B为圆心,以大于12AB的长为半径作弧,两弧分别相交于点P、Q②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的;联结AD,AD=7,sin∠DAC=17,BC=9,求AC

参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】

根据抛物线的图象与系数的关系即可求出答案.【详解】解:由抛物线的开口可知:a<0,由抛物线与y轴的交点可知:c<0,由抛物线的对称轴可知:>0,∴b>0,∴abc>0,故①正确;令x=3,y>0,∴9a+3b+c>0,故②正确;∵OA=OC<1,∴c>﹣1,故③正确;∵对称轴为直线x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴当x=﹣c时,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴设关于x的方程ax1+bx+c=0(a≠0)有一个根为x,∴x﹣c=4,∴x=c+4=,故④正确;∵x1<1<x1,∴P、Q两点分布在对称轴的两侧,∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到对称轴的距离小于x1到对称轴的距离,∴y1>y1,故⑤正确.故选D.【点睛】本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.本题属于中等题型.2、B【解析】

根据已知方程得到y=-1x+6,将其代入所求的代数式后得到:xy=-1x2+6x,利用配方法求该式的最值.【详解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值为1.故选B.【点睛】考查了二次函数的最值,解题时,利用配方法和非负数的性质求得xy的最大值.3、B【解析】试题分析:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选B.考点:简单组合体的三视图.4、C【解析】试题解析:∵四边形ABCD是平行四边形,故选C.5、A【解析】

连接OB,根据切线的性质和直角三角形的两锐角互余求得∠AOB=64°,再由等腰三角形的性质可得∠C=∠OBC,根据三角形外角的性质即可求得∠ACB的度数.【详解】连接OB,∵AB与☉O相切于点B,∴∠OBA=90°,∵∠A=26°,∴∠AOB=90°-26°=64°,∵OB=OC,∴∠C=∠OBC,∴∠AOB=∠C+∠OBC=2∠C,∴∠C=32°.故选A.【点睛】本题考查了切线的性质,利用切线的性质,结合三角形外角的性质求出角的度数是解决本题的关键.6、A【解析】

利用配方法,根据非负数的性质即可解决问题;【详解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,

又∵(x+3)2≥0,(2y-1)2≥0,

∴x2+4y2+6x-4y+11≥1,

故选:A.【点睛】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.7、B【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,故选B.8、B【解析】

朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】依题意得P(朝上一面的数字是偶数)=故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.9、D【解析】

画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN=35∴PM=65故③正确.综上,故选:D.【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.10、B【解析】

由科学计数法的概念表示出0.0000025即可.【详解】0.0000025=2.5×10﹣6.故选B.【点睛】本题主要考查科学计数法,熟记相关概念是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(x+1);.【解析】试题分析:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为.故答案为(x+1),.考点:由实际问题抽象出一元二次方程;勾股定理的应用.12、【解析】

由题意可知:2x-y=,然后等式两边同时乘以-3得到-6x+3y=-,然后代入计算即可.【详解】∵2x-y=,∴-6x+3y=-.∴原式=--1=-.故答案为-.【点睛】本题主要考查的是求代数式的值,利用等式的性质求得-6x+3y=-是解题的关键.13、90°.【解析】

根据三角形内角和得到∠A+∠B+∠C=180°,而∠C=30°,则可计算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把两式相加消去∠B即可求得∠A的度数.【详解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案为:90°.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.14、xy(x﹣y)【解析】原式=xy(x﹣y).故答案为xy(x﹣y).15、75°【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出∠A及∠B的度数,利用三角形的内角和定理可得出∠C的度数.【详解】∵|cosA-|+(sinB-)2=0,∴cosA=,sinB=,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为:75°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值.16、4【解析】试题分析:设OB的长度为x,则根据二次函数的对称性可得:点B的坐标为(x+2,0),点A的坐标为(2-x,0),则OB-OA=x+2-(x-2)=4.点睛:本题主要考查的就是二次函数的性质.如果二次函数与x轴的两个交点坐标为(,0)和(,0),则函数的对称轴为直线:x=.在解决二次函数的题目时,我们一定要注意区分点的坐标和线段的长度之间的区别,如果点在x的正半轴,则点的横坐标就是线段的长度,如果点在x的负半轴,则点的横坐标的相反数就是线段的长度.三、解答题(共8题,共72分)17、(1)袋子中白球有2个;(2).【解析】试题分析:(1)设袋子中白球有x个,根据概率公式列方程解方程即可求得答案;(2)根据题意画出树状图,求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.试题解析:(1)设袋子中白球有x个,根据题意得:=,解得:x=2,经检验,x=2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况,∴两次都摸到相同颜色的小球的概率为:.考点:列表法与树状图法;概率公式.18、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血.【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数.【详解】(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20,故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),补全表格中的数据如下:血型ABABO人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率=,3000×=720,估计这3000人中大约有720人是A型血.【点睛】本题考查了扇形统计图、统计表、概率公式、用样本估计总体等,读懂统计图、统计表,从中找到必要的信息是解题的关键;随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.19、(1)证明见解析;(2)①∠OCE=45°;②EF=-2.【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC.∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用内角和定理,得:∠OCE=45°.②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=,∠OCE=45°.等腰直角三角形的斜边是腰长的倍,得CG=OG=2.FG=2.在Rt△OGE中,∠E=30°,得GE=,则EF=GE-FG=-2.【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=.∴EF=GE-FG=-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.20、证明见解析.【解析】

要证明BE=CE,只要证明△EAB≌△EDC即可,根据题意目中的条件,利用矩形的性质和等边三角形的性质可以得到两个三角形全等的条件,从而可以解答本题.【详解】证明:∵四边形ABCD是矩形,∴AB=CD,∠BAD=∠CDA=90°,∵△ADE是等边三角形,∴AE=DE,∠EAD=∠EDA=60°,∴∠EAD=∠EDC,在△EAB和△EDC中,EA=∴△EAB≌△EDC(SAS),∴BE=CE.【点睛】本题考查矩形的性质、等边三角形的性质、全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21、﹣x+1,2.【解析】

先将括号内的分式通分,再将乘方转化为乘法,约分,最后代入数值求解即可.【详解】原式=(x﹣2)÷(﹣)=(x﹣2)÷=(x﹣2)•=﹣x+1,当x=﹣1时,原式=1+1=2.【点睛】本题考查了整式的混合运算-化简求值,解题的关键是熟练的掌握整式的混合运算法则.22、(1)①∠BEF=60°;②AB'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.【解析】

(1)①当△AEB′为等边三角形时,∠AEB′=60°,由折叠可得,∠BEF=∠BEB′=×120°=60°;②依据AE=B′E,可得∠EAB′=∠EB′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,进而得出EF∥AB′;(2)由折叠可得,CF+B′F=CF+BF=BC=10,依据B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;(3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.【详解】(1)①当△AEB′为等边三角形时,∠AEB′=60°,由折叠可得,∠BEF=∠BEB′=×120°=60°,故答案为60;②AB′∥EF,证明:∵点E是AB的中点,∴AE=BE,由折叠可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值为5﹣5,∴△CB′F周长的最小值=10+5﹣5=5+5;(3)如图,连接AB′,易得∠AB′B=90°,将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,由AB=10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论