版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省伊春市丰城田家炳高级中学高三数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设集合,,则M∪N=(
).A.[0,1] B.{0,1} C.(0,1] D.(-∞,1]参考答案:A【分析】化简集合,按并集的定义,即可求解.【详解】,,.故选:A.【点睛】本题考查集合间的运算,求解对数不等式是解题的关键,属于基础题.2.有六名同学参加演讲比赛,编号分别为1,2,3,4,5,6,比赛结果设特等奖一名,A,B,C,D四名同学对于谁获得特等奖进行预测.A说:不是1号就是2号获得特等奖;B说:3号不可能获得特等奖;C说:4,5,6号不可能获得特等奖;D说;能获得特等奖的是4,5,6号中的一个.公布的比赛结果表明,A,B,C,D中只有一个判断正确.根据以上信息,获得特等奖的是()号同学.A.1 B.2
C.3 D.4,5,6号中的一个参考答案:C【考点】进行简单的合情推理.【分析】因为只有一人猜对,而C与D互相否定,故C、D中一人猜对,再分类讨论,即可得出结论【解答】解:根据以上信息,获得特等奖的是3号同学.因为只有一人猜对,而C与D互相否定,故C、D中一人猜对.假设D对,则推出B也对,与题设矛盾,故D猜错,所以猜对者一定是C;于是B一定猜错,故获奖者是3号选手(此时A错).故选:C.3.已知f(x)=ln(x2+1),g(x)=()x﹣m,若?x1∈[0,3],?x2∈[1,2],使得f(x1)≥g(x2),则实数m的取值范围是()A.[,+∞) B.(﹣∞,] C.[,+∞) D.(﹣∞,﹣]参考答案:A考点: 利用导数求闭区间上函数的最值.
专题: 计算题;压轴题.分析: 先利用函数的单调性求出两个函数的函数值的范围,再比较其最值即可求实数m的取值范围.解答: 解:因为x1∈[0,3]时,f(x1)∈[0,ln10];x2∈[1,2]时,g(x2)∈[﹣m,﹣m].故只需0≥﹣m?m≥.故选A.点评: 本题主要考查函数恒成立问题以及函数单调性的应用,考查计算能力和分析问题的能力,属于中档题.4.数列的前n项和为,则数列的前50项的和为 A.49 B.50 C.99 D.100参考答案:A略5.设,当实数满足不等式组时,目标函数的最大值等于2,则的值是(
)A.2
B.3
C.
D.参考答案:D6.设x,y满足约束条件,当且仅当x=y=1时,z=ax+y取得最大值,则实数a的取值范围是()A.(﹣1,1) B.(﹣∞,1) C.(﹣∞,﹣1) D.(﹣∞,﹣1)∪(1,+∞)参考答案:A【考点】简单线性规划.【分析】画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【解答】解:x,y满足约束条件的可行域如图:当且仅当x=y=1时,z=ax+y取得最大值,即z=ax+y经过(1,1)时,z取得最大值,直线化为y=﹣ax+z,z是几何意义是直线在y轴上的截距,如图,直线的斜率满足:(kAB,kAO)a∈(﹣1,1).故选:A.7.若向量,的夹角为,且||=2,||=1,则与+2的夹角为(
) A. B. C. D.参考答案:A考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用数量积运算性质、向量的夹角公式即可得出.解答: 解:∵向量,的夹角为,且||=2,||=1,∴===1.∴==22+2×1=6,==.∴===,∴与+2的夹角为.故选:A.点评:本题考查了数量积运算性质、向量的夹角公式,属于基础题.8.在△ABC中,内角A、B、C所对的边分别为a、b、c,a=c且满足cosC+(cosA﹣sinA)cosB=0,则△ABC是()A.钝角三角形 B.等边三角形 C.直角三角形 D.不能确定参考答案:B【考点】正弦定理.【专题】解三角形.【分析】利用三角函数恒等变换的应用化简已知等式可得sinAsinB=sinAcosB,由sinA≠0,可解得tanB=,结合范围B∈(0,π),可求B=,由a=c及三角形内角和定理可得A=B=C=,从而得解.【解答】解:∵cosC+(cosA﹣sinA)cosB=0,?﹣cos(A+B)+cosAcosB﹣sinAcosB=0,?﹣cosAcosB+sinAsinB+cosAcosB=sinAcosB,?sinAsinB=sinAcosB,(sinA≠0)?sinB=cosB,?tanB=,又∵B∈(0,π),∴解得:B=.又∵a=c,即A=C,且A+B+C=π,∴解得:A=B=C=.三角形是等边三角形.故选:B.【点评】本题主要考查了三角函数恒等变换的应用,考查了三角形内角和定理的应用,三角形形状的判定,属于基本知识的考查.9.设全集,集合,,则(
)A.
B.
C.
D.参考答案:A10.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为A. B. C. D.参考答案:D外面大正方形边长为5,所以大正方形面积为25,四个全等的直角三角形面积为,因此概率为选D.
二、填空题:本大题共7小题,每小题4分,共28分11.设为平面上过点(0,1)的直线,的斜率等可能地取:,用X表示坐标原点到的距离,则随机变量X的数学期望是_______参考答案:12.数列{an}的通项公式为an=,其前n项之和为10,则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为________.参考答案:由已知,得an==-,则Sn=a1+a2+…+an=(-)+(-)+…+(-)=-1,∴-1=10,解得n=120,即直线方程化为121x+y+120=0,故直线在y轴上的截距为-120.
13.已知正方形的边长为2,为的中点,则=________。参考答案:14.设实数,若仅有一个常数c使得对于任意的,都有满足方程,这时,实数的取值的集合为
。参考答案:15.对于正整数n,设xn是关于x的方程nx3+2x﹣n=0的实数根,记an=[(n+1)xn](n≥2),其中[x]表示不超过实数x的最大整数,则(a2+a3+…+a2015)=
.参考答案:2017【考点】8E:数列的求和.【分析】根据条件构造f(x)=nx3+2x﹣n,求函数的导数,判断函数的导数,求出方程根的取值范围进行求解即可.【解答】解:设f(x)=nx3+2x﹣n,则f′(x)=3nx2+2,当n是正整数时,f′(x)>0,则f(x)为增函数,∵当n≥2时,f()=n×()3+2×()﹣n=?(﹣n2+n+1)<0,且f(1)=2>0,∴当n≥2时,方程nx3+2x﹣n=0有唯一的实数根xn且xn∈(,1),∴n<(n+1)xn<n+1,an=[(n+1)xn]=n,因此(a2+a3+a4+…+a2015)=(2+3+4+…+2015)==2017,故答案为:2017.16.如果复数是实数,则实数
▲
.参考答案:-117.已知圆锥的母线长为,侧面积为,则此圆锥的体积为__________(结果保留).参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=(其中k∈R,e=2.71828…是自然数的底数),f′(x)为f(x)的导函数.(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若x∈(0,1]时,f′(x)=0都有解,求k的取值范围;(3)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.参考答案:【考点】利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(1)求出当k=2时,f(x)的导数,求得切线的斜率和切点,由点斜式方程即可得到切线方程;(2)由f′(x)=0可得k=,运用导数求得右边函数的最大值,即可得到k的范围;(3)由f′(1)=0,可得k=1,对任意x>0,g(x)<e﹣2+1等价为1﹣x﹣xlnx<(e﹣2+1),先证1﹣x﹣xlnx≤e﹣2+1,可由导数求得,再证>1.即可证得对任意x>0,f′(x)<恒成立.【解答】解:(1)当k=2时,f(x)=的导数为f′(x)=(x>0),f′(1)=﹣,f(1)=,在点(1,f(1))处的切线方程为y﹣=﹣(x﹣1),即为y=﹣x+;(2)f′(x)=0,即=0,即有k=,令F(x)=,由0<x≤1,F′(x)=﹣<0,F(x)在(0,1)递减,x→0,F(x)→+∞,F(x)≥1,即k≥1;(3)证明:由f′(1)=0,可得k=1,g(x)=(x2+x)f′(x),即g(x)=(1﹣x﹣xlnx),对任意x>0,g(x)<e﹣2+1等价为1﹣x﹣xlnx<(e﹣2+1),由h(x)=1﹣x﹣xlnx得h′(x)=﹣2﹣lnx,当0<x<e﹣2时,h′(x)>0,h(x)递增,当x>e﹣2时,h′(x)<0,h(x)递减,则h(x)的最大值为h(e﹣2)=1+e﹣2,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=ex﹣(x+1),φ′(x)=ex﹣1,x>0时,φ′(x)>0,φ(x)>0,φ(x)>φ(0)=0,则x>0时,φ(x)=ex﹣(x+1)>0即>1.即1﹣x﹣xlnx≤e﹣2+1<(e﹣2+1),故有对任意x>0,f′(x)<恒成立.19.已知曲线C的极坐标方程是ρ﹣2cosθ﹣4sinθ=0,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,设直线l的参数方程是(t是参数).(1)将曲线C的极坐标方程化为直角坐标方程,将直线l的参数方程化为普通方程;(2)若直线l与曲线C相交于A、B两点,与y轴交于点E,求|EA|+|EB|.参考答案:略20.已知函数,当时,求不等式的解集参考答案:略21.在①;②;③这三个条件中任选一个,补充在下面问题中的横线上,并解答相应的问题.在△ABC中,内角A,B,C的对边分别为a,b,c,且满足________________,,求△ABC的面积.参考答案:横线处任填一个都可以,面积为.【分析】无论选哪一个,都先由正弦定理化边为角后,由诱导公式,展开后,可求得角,再由余弦定理求得,从而易求得三角形面积.【详解】在横线上填写“”.解:由正弦定理,得.由,得.由,得.所以.又(若,则这与矛盾),所以.又,得.由余弦定理及,得,即.将代入,解得.所以.在横线上填写“”.解:由及正弦定理,得.又,所以有.因,所以.从而有.又,所以由余弦定理及,得即.将代入,解得.所以.在横线上填写“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.将代入,解得.所以.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度房产过户房屋租赁权过户服务合同3篇
- 2025年度北京市高新技术企业研发项目劳务合同模板
- 2025年度电子产品全球代销代理协议书2篇
- 玉溪师范学院《模拟与数字电路技术》2023-2024学年第一学期期末试卷
- 工业自动化改造升级项目协议
- 价格策略保密协议书(2篇)
- 鹰潭职业技术学院《管理能力与沟通技巧》2023-2024学年第一学期期末试卷
- 2024年度物流企业预算管理与运营优化咨询合同3篇
- 义乌工商职业技术学院《小组工作》2023-2024学年第一学期期末试卷
- 马术俱乐部加油站租赁合同3篇
- 现场组织机构框图及说明
- 《城镇燃气管理条例》解读
- 混凝土结构设计原理课程设计
- 膜厚测试报告
- X62W万能铣床电气原理图解析(共18页)
- 减速器箱体工艺工装设计说明书(含图纸)
- (完整版)中央空调现场勘察信息表
- 技术交底给水铜管道及配件安装.
- 实验动物房改造项目设计浅谈
- 国际商法考点期末考试
- 齿轮画法图基础资料
评论
0/150
提交评论