版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省齐齐哈尔市克东县达标名校2023-2024学年中考考前最后一卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.反比例函数y=1-6txA.t<16B.t>16C.t≤12.用6个相同的小正方体搭成一个几何体,若它的俯视图如图所示,则它的主视图不可能是()A. B. C. D.3.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为()A.14 B.7 C.﹣2 D.24.计算(-1)×2的结果是()A.-2 B.-1 C.1 D.25.如图,A,C,E,G四点在同一直线上,分别以线段AC,CE,EG为边在AG同侧作等边三角形△ABC,△CDE,△EFG,连接AF,分别交BC,DC,DE于点H,I,J,若AC=1,CE=2,EG=3,则△DIJ的面积是()A. B. C. D.6.某市2017年国内生产总值(GDP)比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP年平均增长率为%,则%满足的关系是()A. B.C. D.7.观察下列图形,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.若代数式有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠19.△ABC在网络中的位置如图所示,则cos∠ACB的值为()A. B. C. D.10.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为()A.2 B.﹣2 C.4 D.﹣411.下列运算正确的是()A.(a2)4=a6 B.a2•a3=a6 C. D.12.如图是由4个相同的正方体搭成的几何体,则其俯视图是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.点(-1,a)、(-2,b)是抛物线上的两个点,那么a和b的大小关系是a_______b(填“>”或“<”或“=”).14.=________15.点(1,–2)关于坐标原点O的对称点坐标是_____.16.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是_____.17.A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.18.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.(1)若∠G=48°,求∠ACB的度数;(1)若AB=AE,求证:∠BAD=∠COF;(3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=,求的值.20.(6分)在以“关爱学生、安全第一”为主题的安全教育宣传月活动中,某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A:结伴步行、B:自行乘车、C:家人接送、D:其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)本次抽查的学生人数是多少人?(2)请补全条形统计图;请补全扇形统计图;(3)“自行乘车”对应扇形的圆心角的度数是度;(4)如果该校学生有2000人,请你估计该校“家人接送”上学的学生约有多少人?21.(6分)计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.22.(8分)如图,在△ABC中,∠C=90°.作∠BAC的平分线AD,交BC于D;若AB=10cm,CD=4cm,求△ABD的面积.23.(8分)我市为创建全国文明城市,志愿者对某路段的非机动车逆行情况进行了10天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)这组数据的中位数是,众数是;(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过“小手拉大手”活动后,非机动车逆向行驶次数明显减少,经过这一路段的再次调查发现,平均每天的非机动车逆向行驶次数比第一次调查时减少了4次,活动后,这一路段平均每天还出现多少次非机动车逆向行驶情况?24.(10分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.25.(10分)解方程26.(12分)如图,在平行四边形ABCD中,,点E、F分别是BC、AD的中点.(1)求证:≌;(2)当时,求四边形AECF的面积.27.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解析】
将一次函数解析式代入到反比例函数解析式中,整理得出x2﹣2x+1﹣6t=0,又因两函数图象有两个交点,且两交点横坐标的积为负数,根据根的判别式以及根与系数的关系可求解.【详解】由题意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵两函数图象有两个交点,且两交点横坐标的积为负数,∴(-解不等式组,得t>16故选:B.点睛:此题主要考查了反比例函数与一次函数的交点问题,关键是利用两个函数的解析式构成方程,再利用一元二次方程的根与系数的关系求解.2、D【解析】分析:根据主视图和俯视图之间的关系可以得出答案.详解:∵主视图和俯视图的长要相等,∴只有D选项中的长和俯视图不相等,故选D.点睛:本题主要考查的就是三视图的画法,属于基础题型.三视图的画法为:主视图和俯视图的长要相等;主视图和左视图的高要相等;左视图和俯视图的宽要相等.3、D【解析】
解不等式得到x≥m+3,再列出关于m的不等式求解.【详解】≤﹣1,m﹣1x≤﹣6,﹣1x≤﹣m﹣6,x≥m+3,∵关于x的一元一次不等式≤﹣1的解集为x≥4,∴m+3=4,解得m=1.故选D.考点:不等式的解集4、A【解析】
根据两数相乘,同号得正,异号得负,再把绝对值相乘计算即可.【详解】-1×2=-故选A.【点睛】本题考查了有理数的乘法计算,解答本题的关键是熟练掌握有理数的乘法法则.5、A【解析】
根据等边三角形的性质得到FG=EG=3,∠AGF=∠FEG=60°,根据三角形的内角和得到∠AFG=90°,根据相似三角形的性质得到==,==,根据三角形的面积公式即可得到结论.【详解】∵AC=1,CE=2,EG=3,∴AG=6,∵△EFG是等边三角形,∴FG=EG=3,∠AGF=∠FEG=60°,∵AE=EF=3,∴∠FAG=∠AFE=30°,∴∠AFG=90°,∵△CDE是等边三角形,∴∠DEC=60°,∴∠AJE=90°,JE∥FG,∴△AJE∽△AFG,∴==,∴EJ=,∵∠BCA=∠DCE=∠FEG=60°,∴∠BCD=∠DEF=60°,∴∠ACI=∠AEF=120°,∵∠IAC=∠FAE,∴△ACI∽△AEF,∴==,∴CI=1,DI=1,DJ=,∴IJ=,∴=•DI•IJ=××.故选:A.【点睛】本题考查了等边三角形的性质,相似三角形的判定和性质,三角形的面积的计算,熟练掌握相似三角形的性质和判定是解题的关键.6、D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.详解:设2016年的国内生产总值为1,∵2017年国内生产总值(GDP)比2016年增长了12%,∴2017年的国内生产总值为1+12%;∵2018年比2017年增长7%,∴2018年的国内生产总值为(1+12%)(1+7%),∵这两年GDP年平均增长率为x%,∴2018年的国内生产总值也可表示为:,∴可列方程为:(1+12%)(1+7%)=.故选D.点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.7、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既不是轴对称图形,也不是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、既不是轴对称图形,也不是中心对称图形.故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、D【解析】试题分析:∵代数式有意义,∴,解得x≥0且x≠1.故选D.考点:二次根式,分式有意义的条件.9、B【解析】作AD⊥BC的延长线于点D,如图所示:在Rt△ADC中,BD=AD,则AB=BD.cos∠ACB=,故选B.10、D【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=(x<0),y=(x>0)的图象上,即可得S△OBD=,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【详解】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO=,
∴=,
∴=,即,
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.【点睛】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。11、C【解析】
根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式=,所以C选项正确;D、与不能合并,所以D选项错误.故选:C.【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.12、A【解析】试题分析:从上面看是一行3个正方形.故选A考点:三视图二、填空题:(本大题共6个小题,每小题4分,共24分.)13、<【解析】把点(-1,a)、(-2,b)分别代入抛物线,则有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案为<.14、13【解析】=2+9-4+6=13.故答案是:13.15、(-1,2)【解析】
根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】A(1,-2)关于原点O的对称点的坐标是(-1,2),
故答案为:(-1,2).【点睛】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.16、1.【解析】
求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,【详解】解:∵四边形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴设AD=AB=5x,AE=3x,则5x﹣3x=4,x=1,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:在Rt△BDE中,故答案为:1.【点睛】本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.17、【解析】
由图象得出解析式后联立方程组解答即可.【详解】由图象可得:y甲=4t(0≤t≤5);y乙=;由方程组,解得t=.故答案为.【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答.18、(1,﹣3)【解析】
画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).
故答案是:(1,-3).【点睛】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)48°(1)证明见解析(3)【解析】
(1)连接CD,根据圆周角定理和垂直的定义可得结论;
(1)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;
(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=x,代入面积公式可得结论.【详解】(1)连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直径,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)过O作OG⊥AB于G,设CF=x,∵tan∠CAF==,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,设OF=a,则OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=x,∴OF=AG=x,∵OA=OB,OG⊥AB,∴AB=1AG=x,∴.【点睛】圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(1)根据外角的性质和圆的性质得:;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.20、(1)本次抽查的学生人数是120人;(2)见解析;(3)126;(4)该校“家人接送”上学的学生约有500人.【解析】
(1)本次抽查的学生人数:18÷15%=120(人);(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),据此补全条形统计图;(3)“自行乘车”对应扇形的圆心角的度数360°×=126°;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人).【详解】解:(1)本次抽查的学生人数:18÷15%=120(人),答:本次抽查的学生人数是120人;(2)A:结伴步行人数120﹣42﹣30﹣18=30(人),补全条形统计图如下:“结伴步行”所占的百分比为×100%=25%;“自行乘车”所占的百分比为×100%=35%,
“自行乘车”在扇形统计图中占的度数为360°×35%=126°,补全扇形统计图,如图所示;(3)“自行乘车”对应扇形的圆心角的度数360°×=126°,故答案为126;(4)估计该校“家人接送”上学的学生约有:2000×25%=500(人),答:该校“家人接送”上学的学生约有500人.【点睛】本题主要考查条形统计图及扇形统计图及相关计算,用样本估计总体.解题的关键是读懂统计图,从条形统计图中得到必要的信息是解决问题的关键.21、【解析】分析:化简绝对值、0次幂和负指数幂,代入30°角的三角函数值,然后按照有理数的运算顺序和法则进行计算即可.详解:原式=+1﹣2×+=.点睛:本题考查了实数的运算,用到的知识点主要有绝对值、零指数幂和负指数幂,以及特殊角的三角函数值,熟记相关法则和性质是解决此题的关键.22、(1)答案见解析;(2)【解析】
(1)根据三角形角平分线的定义,即可得到AD;
(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求;
(2)如图,过D作DE⊥AB于E,
∵AD平分∠BAC,
∴DE=CD=4,
∴S△ABD=AB·DE=20cm2.【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.23、(1)7、7和8;(2)见解析;(3)第一次调查时,平均每天的非机动车逆向行驶的次数3次【解析】
(1)将数据按照从下到大的顺序重新排列,再根据中位数和众数的定义解答可得;(2)根据折线图确定逆向行驶7次的天数,从而补全直方图;(3)利用加权平均数公式求得违章的平均次数,从而求解.【详解】解:(1)∵被抽查的数据重新排列为:5、5、6、7、7、7、8、8、8、9,∴中位数为=7,众数是7和8,故答案为:7、7和8;(2)补全图形如下:(3)∵第一次调查时,平均每天的非机动车逆向行驶的次数为=7(次),∴第一次调查时,平均每天的非机动车逆向行驶的次数3次.【点睛】本题考查的是条形统计图和折线统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24、(1)1(2)10%.【解析】试题分析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.试题解析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据题意得,解得x=1.经检验,x=1是原方程的根.答:每张门票的原定票价为1元;(2)设平均每次降价的百分率为y,根据题意得1(1-y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去).答:平均每次降价10%.考点:1.一元二次方程的应用;2.分式方程的应用.25、x=-1.【解析】
解:方程两边同乘x-2,得2x=x-2+1解这个方程,得x=-1检验:x=-1时,x-2≠0∴原方程的解是x=-1首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解26、(1)见解析;(2)【解析】
(1)根据平行四边形的性质得出AB=CD,BC=AD,∠B=∠D,求出BE=DF,根据全等三角形的判定推出即可;
(2)求出△ABE是等边三角形,求出高AH的长,再求出面积即可.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年高校博士研究生教师职务聘任合同范本3篇
- 二零二五年度跨境电子商务代理销售合同6篇
- 二零二五年空压机行业市场推广与销售合同3篇
- 二零二五年度储煤场煤炭储备与智能物流服务合同3篇
- 2024版土地贷款反担保合同范本3篇
- 二零二五年度特殊环境搬迁及环保措施合同3篇
- 二零二五版跨境担保居间交易合同细则2篇
- 展会国际物流合同(2篇)
- 二零二五版代驾服务租赁合同范本(含车辆使用限制条款)2篇
- 二零二五版快递驾驶员职业发展规划与聘用合同3篇
- 公共政策分析 课件 第8章政策评估;第9章政策监控
- 人教版八年级上学期物理期末复习(压轴60题40大考点)
- 企业环保知识培训课件
- 2024年度管理评审报告
- 暨南大学《微观经济学》2023-2024学年第一学期期末试卷
- 医药销售合规培训
- DB51-T 5038-2018 四川省地面工程施工工艺标准
- 三年级数学(上)计算题专项练习附答案
- GB/T 12723-2024单位产品能源消耗限额编制通则
- 2024年广东省深圳市中考英语试题含解析
- GB/T 16288-2024塑料制品的标志
评论
0/150
提交评论