版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省鄂州市体育艺术职业高级中学高一数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数,()在一个周期内的图象如右图所示,此函数的解析式为(
)A.B.C.
D.
参考答案:A略2.下列函数中,是奇函数且在区间(0,+∞)上为减函数的是()A.y=3﹣x B.y=x3 C.y=x﹣1 D.参考答案:C【考点】奇偶性与单调性的综合.【分析】根据一次函数的单调性及奇偶性,可判断A的真假;根据幂函数的单调性及奇偶性,可判断B的真假;根据反比例函数的单调性及奇偶性,可判断C的真假;根据指数函数的单调性及奇偶性,可判断D的真假;【解答】解:函数y=3﹣x是非奇非偶函数,但在区间(0,+∞)上为减函数函数y=x3是奇函数,但在区间(0,+∞)上为增函数函数y=x﹣1=奇函数,且在区间(0,+∞)上为减函数函数是非奇非偶函数,但在区间(0,+∞)上为减函数故选C3.已知实数,函数若,则a的值为(
)A.
B.
C.
D.参考答案:D4.(4分)某几何体的三视图如图所示,那么这个几何体是() A. 三棱锥 B. 四棱锥 C. 四棱台 D. 三棱台参考答案:B考点: 简单空间图形的三视图.专题: 空间位置关系与距离.分析: 由题目中的三视图中,正视图和侧视图为三角形,可知几何体为锥体,进而根据俯视图的形状,得到答案.解答: 解:∵正视图和侧视图为三角形,可知几何体为锥体,又∵俯视图为四边形,故该几何体为四棱锥,故选:B点评: 本题考查的知识点是由三视图判断几何体的形状,根据三视图中有两个矩形,该几何体为棱柱,有两个三角形,该几何体为棱锥,有两个梯形,该几何体为棱台,是解答本题的关键.5.下列因式分解中,结果正确的是()
A.
B.
C.
D.参考答案:B6.设甲、乙两楼相距,从乙楼底望甲楼顶的仰角为,从甲楼顶望乙楼顶的俯角为,则甲、乙两楼的高分别是
(
)A.
B.
C.
D.参考答案:A7.已知两个平面垂直,下列命题①一个平面内的已知直线必垂直于另一个平面的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.其中正确的个数是(
)
A.3
B.2
C.1
D.0参考答案:C略8.设的三个内角所对的边分别是,已知,,,则()
A.
B.
C.
D.
3参考答案:C
略9.集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是(
)A. B. C. D.参考答案:B集合,从中各任意取一个数有种,其两数之和为的情况有两种:,所以这两数之和等于的概率,故选B.10.二次函数y=ax2+bx与指数函数y=()x的图象只可能是()A. B. C. D.参考答案:A【考点】指数函数的图象与性质;二次函数的图象.【分析】根据二次函数的对称轴首先排除B、D选项,再根据a﹣b的值的正负,结合二次函数和指数函数的性质逐个检验即可得出答案.【解答】解:根据指数函数可知a,b同号且不相等则二次函数y=ax2+bx的对称轴<0可排除B与D选项C,a﹣b>0,a<0,∴>1,则指数函数单调递增,故C不正确故选:A二、填空题:本大题共7小题,每小题4分,共28分11.若方程有两个实数根,则实数的取值范围是
参考答案:或.略12.函数的单调递增区间是
.参考答案:因为此函数的定义域为,根据复合函数的单调性判断方法可知此函数的单调递增区间为
13.已知函数f(x)是定义在R上不恒为零的函数,且对于任意实数a,b∈R,满足:(ab)=a(b)+b(a),(2)=2,an=(n∈N*),bn=(n∈N*).考察下列结论:①(0)=(1);
②(x)为偶函数;③数列{an}为等比数列;④数列{bn}为等差数列.其中正确的结论共有
.参考答案:①③④14.已知直线:(为给定的正常数,为参数,)构成的集合为S,给出下列命题:
①当时,中直线的斜率为;②中的所有直线可覆盖整个坐标平面.③当时,存在某个定点,该定点到中的所有直线的距离均相等;④当>时,中的两条平行直线间的距离的最小值为;其中正确的是
(写出所有正确命题的编号).参考答案:③④15.如图3.在△ABC中,AB=3,AC=5,若O为△ABC内一点,且满足,则的值是
.参考答案:8略16.对于函数与,若存在,,使得,则称函数与互为“零点密切函数”,现已知函数与互为“零点密切函数”,则实数的取值范围是.参考答案:17.已知数列{an}中,,前n项和为Sn.若,则数列的前15项和为_______.参考答案:【分析】先由取倒数判断是等差数列,进而求得数列的通项公式,再由裂项相消法求数列的前项和.【详解】因为,所以.所以.又,所以是首项为,公差为的等差数列,则.所以.又也满足,所以.所以.所以数列的前项和为.【点睛】本题考查数列的综合问题,考查与的关系、等差数列的判定、裂项相消法求和,综合性较强.已知与的关系式,有两种思路:一是由消掉得到关于通项的关系式;二是把代换成得到关于求和的关系式.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题12分)已知一圆圆心C在直线上,与x轴相切,且被直线截得的弦长为,求此圆的方程.参考答案:设圆的方程为
则
该圆的方程为(x﹣1)2+(y﹣3)2=9或(x+1)2+(y+3)2=9.
19.二手车经销商小王对其所经营的某一型号二手汽车的使用年数x(0<x≤10)与销售价格y(单位:万元/辆)进行整理,得到如表的对应数据:使用年数246810售价16139.574.5
(1)试求y关于x的回归直线方程;(参考公式:,)(2)已知每辆该型号汽车的收购价格为万元,根据(1)中所求的回归方程,预测x为何值时,小王销售一辆该型号汽车所获得的利润z最大?参考答案:(1);(2)预测当时,销售利润取得最大值.试题分析:(1)由表中数据利用平均数公式计算,根据公式求出将样本中心点坐标代入回归方程求得,即可写出回归直线方程;(2)写出利润函数,利用二次函数的图象与性质求出时取得最大值.试题解析:(1)由已知:,,,,;所以回归直线的方程为(2),所以预测当时,销售利润取得最大值.20.已知,,且(1)求函数f(x)的解析式;(2)当时,f(x)的最小值是-4,求此时函数f(x)的最大值,并求出函数f(x)取得最大值时自变量x的值参考答案:(1)(2)试题分析:(1)由向量的数量积运算代入点的坐标得到三角函数式,运用三角函数基本公式化简为的形式;(2)由定义域可得到的范围,结合函数单调性求得函数最值及对应的自变量值试题解析:(1)即(2)由,,,,,此时,考点:1.向量的数量积运算;2.三角函数化简及三角函数性质21.(10分)设=(1,),=(cos2x,sin2x),f(x)=2(1)求函数f(x)的单调递增区间(2)若x,求函数f(x)的最大值、最小值及其对应的x的值.参考答案:考点: 两角和与差的正弦函数;三角函数的最值.专题: 计算题;三角函数的图像与性质.分析: (1)由两角和与差的正弦函数公式化简可得f(x)=4sin(2x+),由2k≤2x+≤2k(k∈Z)可解得函数f(x)的单调递增区间.(2)由x,可得2x+∈,由正弦函数的图象和性质即可求函数f(x)的最大值、最小值及其对应的x的值.解答: 解:(1)f(x)=2(cos2x+sin2x)=4(cos2x+sin2x)=4sin(2x+)…(3分)由2k≤2x+≤2k(k∈Z)可解得:kπ﹣≤x≤kπ(k∈Z)故函数f(x)的单调递增区间是:(k∈Z)…(5分)(2)∵x,∴2x+∈,…(6分)∴当x=时,函数f(x)的最大值为4…(8分)当x=时,函数f(x)的最大值为﹣2…(10分)点评: 本题主要考查了两角和与差的正弦函数公式的应用,考查了正弦函数的图象和性质,属于基本知识的考查.22.已知函数定义域为[-1,1],若对于任意的,都有,且时,有.(Ⅰ)证明函数是奇函数;(Ⅱ)讨论函数在区间[-1,1]上的单调性;(Ⅲ)设,若,对所有,恒成立,求实数的取值范围.参考答案:试题解析:(Ⅰ)因为有,令,得,所以,
1分令可得:所以,所以为奇函数.
3分(Ⅱ)是定义在上的奇函数,由题意设,则由题意时,有,是在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024跨境教育服务与合作合同
- 2025年消防现场施工安全文明施工合同范本
- 2025年度高风险投资借贷合同风险预警版3篇
- 2024版建筑工程勘察合同书
- 二零二五年度酒水行业专业论坛与合作交流合同3篇
- 个人与企业间产品代理合同(2024版)
- 2025年豆粕代销委托管理标准合同3篇
- 2024版政府定点采购合同书
- 2024施工项目BIM技术应用中介服务协议2篇
- 2025年智能小区绿化节能技术应用承包合同2篇
- 建筑史智慧树知到期末考试答案2024年
- 金蓉颗粒-临床用药解读
- 社区健康服务与管理教案
- 2023-2024年家政服务员职业技能培训考试题库(含答案)
- 2023年(中级)电工职业技能鉴定考试题库(必刷500题)
- 藏历新年文化活动的工作方案
- 果酒酿造完整
- 第4章-理想气体的热力过程
- 生涯发展展示
- 手术室应对突发事件、批量伤员应急预案及处理流程
- 动机-行为背后的原因课件
评论
0/150
提交评论