广东省汕头市潮南区胪岗镇重点名校2022年中考二模数学试题含解析_第1页
广东省汕头市潮南区胪岗镇重点名校2022年中考二模数学试题含解析_第2页
广东省汕头市潮南区胪岗镇重点名校2022年中考二模数学试题含解析_第3页
广东省汕头市潮南区胪岗镇重点名校2022年中考二模数学试题含解析_第4页
广东省汕头市潮南区胪岗镇重点名校2022年中考二模数学试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省汕头市潮南区胪岗镇重点名校2022年中考二模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.x4•x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=12.对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是()A.40 B.45 C.51 D.563.若x=-2是关于x的一元二次方程x2-ax+a2=0的一个根,则a的值为()A.1或4 B.-1或-4 C.-1或4 D.1或-44.函数y=中,自变量x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠35.若a与﹣3互为倒数,则a=()A.3 B.﹣3 C.13 D.-6.cos30°=()A. B. C. D.7.抛物线y=3(x﹣2)2+5的顶点坐标是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)8.如图,是由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,则拿掉这个小立方体木块之后的几何体的俯视图是()A. B. C. D.9.不等式的解集在数轴上表示正确的是()A. B. C. D.10.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件11.如图,一次函数y=x﹣1的图象与反比例函数的图象在第一象限相交于点A,与x轴相交于点B,点C在y轴上,若AC=BC,则点C的坐标为()A.(0,1) B.(0,2) C. D.(0,3)12.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟 B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟 D.便利店离小丽家的距离为1000米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,……按此作法进行去,点Bn的纵坐标为(n为正整数).14.的相反数是_____,倒数是_____,绝对值是_____15.=________16.如图,在平面直角坐标系xOy中,直线l:y=x-与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A3的横坐标为______;点A2018的横坐标为______.17.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.18.化简:=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.求m的值;若∠DBC=∠ABC,求一次函数y=kx+b的表达式.20.(6分)化简求值:,其中x是不等式组的整数解.21.(6分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(1)求点Q落在直线y=﹣x﹣1上的概率.22.(8分)数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.23.(8分)在大城市,很多上班族选择“低碳出行”,电动车和共享单车成为他们的代步工具.某人去距离家8千米的单位上班,骑共享单车虽然比骑电动车多用20分钟,但却能强身健体,已知他骑电动车的速度是骑共享单车的1.5倍,求骑共享单车从家到单位上班花费的时间.24.(10分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.25.(10分)如图,正方形ABCD的边长为2,BC边在x轴上,BC的中点与原点O重合,过定点M(-2,0)与动点P(0,t)的直线MP记作l.(1)若l的解析式为y=2x+4,判断此时点A是否在直线l上,并说明理由;(2)当直线l与AD边有公共点时,求t的取值范围.26.(12分)先化简,再求值:,其中a=+1.27.(12分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元/个)之间的对应关系如图所示.试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出最大利润.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算术平方根取正号);(a6)考点:1、幂的运算;2、完全平方公式;3、算术平方根.2、C【解析】

解:根据定义,得∴解得:.故选C.3、B【解析】

试题分析:把x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案选B.考点:一元二次方程的解;一元二次方程的解法.4、D【解析】由题意得,x﹣1≠0,解得x≠1.故选D.5、D【解析】试题分析:根据乘积是1的两个数互为倒数,可得3a=1,∴a=13故选C.考点:倒数.6、C【解析】

直接根据特殊角的锐角三角函数值求解即可.【详解】故选C.【点睛】考点:特殊角的锐角三角函数点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.7、C【解析】

根据二次函数的性质y=a(x﹣h)2+k的顶点坐标是(h,k)进行求解即可.【详解】∵抛物线解析式为y=3(x-2)2+5,∴二次函数图象的顶点坐标是(2,5),故选C.【点睛】本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.8、B【解析】

俯视图是从上面看几何体得到的图形,据此进行判断即可.【详解】由7个相同的小立方体木块堆成的一个几何体,拿掉1个小立方体木块之后,这个几何体的主(正)视图没变,得拿掉第一排的小正方形,拿掉这个小立方体木块之后的几何体的俯视图是,故选B.【点睛】本题主要考查了简单几何体的三视图,解题时注意:俯视图就是从几何体上面看到的图形.9、B【解析】

根据不等式的性质:先移项,再合并即可解得不等式的解集,最后将解集表示在数轴上即可.【详解】解:解:移项得,

x≤3-2,

合并得,

x≤1;

在数轴上表示应包括1和它左边的部分,如下:;

故选:B.【点睛】本题考查了一元一次不等式的解集的求法及在数轴上表示不等式的解集,注意数轴上包括的端点实心点表示.10、D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.11、B【解析】

根据方程组求出点A坐标,设C(0,m),根据AC=BC,列出方程即可解决问题.【详解】由,解得或,

∴A(2,1),B(1,0),

设C(0,m),

∵BC=AC,

∴AC2=BC2,

即4+(m-1)2=1+m2,

∴m=2,

故答案为(0,2).【点睛】本题考查了反比例函数与一次函数的交点坐标问题、勾股定理、方程组等知识,解题的关键是会利用方程组确定两个函数的交点坐标,学会用方程的思想思考问题.12、C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、.【解析】寻找规律:由直线y=x的性质可知,∵B2,B3,…,Bn是直线y=x上的点,∴△OA1B1,△OA2B2,…△OAnBn都是等腰直角三角形,且A2B2=OA2=OB1=OA1;A3B3=OA3=OB2=OA2=OA1;A4B4=OA4=OB3=OA3=OA1;…….又∵点A1坐标为(1,0),∴OA1=1.∴,即点Bn的纵坐标为.14、,【解析】∵只有符号不同的两个数是互为相反数,∴的相反数是;∵乘积为1的两个数互为倒数,∴的倒数是;∵负数得绝对值是它的相反数,∴绝对值是故答案为(1).(2).(3).15、13【解析】=2+9-4+6=13.故答案是:13.16、【解析】

利用一次函数图象上点的坐标特征可求出点B1的坐标,根据等边三角形的性质可求出点A1的坐标,同理可得出点B2、A2、A3的坐标,根据点An坐标的变化即可得出结论.【详解】当y=0时,有x-=0,解得:x=1,∴点B1的坐标为(1,0),∵A1OB1为等边三角形,∴点A1的坐标为(,).当y=时.有x-=,解得:x=,∴点B2的坐标为(,),∵A2A1B2为等边三角形,∴点A2的坐标为(,).同理,可求出点A3的坐标为(,),点A2018的坐标为(,).故答案为;.【点睛】本题考查了一次函数图象上点的坐标特征、等边三角形的性质以及规律型中点的坐标,根据一次函数图象上点的坐标特征结合等边三角形的性质找出点An横坐标的变化是解题的关键.17、【解析】试题分析:上方的正六边形涂红色的概率是,故答案为.考点:概率公式.18、2【解析】

根据算术平方根的定义,求数a的算术平方根,也就是求一个正数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】∵22=4,∴=2.【点睛】本题考查求算术平方根,熟记定义是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)-6;(2).【解析】

(1)由点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐标,作DE⊥BC.延长DE交AB于点F,证△DBE≌△FBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得.【详解】解:(1)∵点B(﹣2,n)、D(3﹣3n,1)在反比例函数(x<0)的图象上,∴,解得:;(2)由(1)知反比例函数解析式为,∵n=3,∴点B(﹣2,3)、D(﹣6,1),如图,过点D作DE⊥BC于点E,延长DE交AB于点F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴点F(2,1),将点B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【点睛】本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长.20、当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【解析】

先化简分式,再解不等式组求得x的取值范围,在此范围内找到符合分式有意义的x的整数值,代入计算可得.【详解】原式=÷=•=,解不等式组,解不等式①,得:x>﹣4,解不等式②,得:x≤﹣1,∴不等式组的解集为﹣4<x≤﹣1,∴不等式的整数解是﹣3,﹣2,﹣1.又∵x+1≠0,x﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,当x=﹣3时,原式=﹣,当x=﹣2时,原式=﹣1.【点睛】本题考查了分式的化简求值及一元一次不等式组的整数解,求分式的值时,一定要选择使每个分式都有意义的未知数的值.21、(1)见解析;(1)【解析】试题分析:先用列表法写出点Q的所有可能坐标,再根据概率公式求解即可.(1)由题意得

1

1

-1

(1,-1)

(1,-1)

-1

(1,-1)

(1,-1)

-2

(1,-2)

(1,-2)

(1)共有6种等可能情况,符合条件的有1种P(点Q在直线y=−x−1上)=.考点:概率公式点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.22、576名【解析】试题分析:根据统计图可以求得本次调查的人数和体重落在B组的人数,从而可以将条形统计图补充完整,进而可以求得我校初三年级体重介于47kg至53kg的学生大约有多少名.试题解析:本次调查的学生有:32÷16%=200(名),体重在B组的学生有:200﹣16﹣48﹣40﹣32=64(名),补全的条形统计图如右图所示,我校初三年级体重介于47kg至53kg的学生大约有:1800×=576(名),答:我校初三年级体重介于47kg至53kg的学生大约有576名.23、骑共享单车从家到单位上班花费的时间是1分钟.【解析】试题分析:设骑共享单车从家到单位上班花费x分钟,找出题目中的等量关系,列出方程,求解即可.试题解析:设骑共享单车从家到单位上班花费x分钟,依题意得:解得x=1.经检验,x=1是原方程的解,且符合题意.答:骑共享单车从家到单位上班花费的时间是1分钟.24、(1)50,360;(2).【解析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有(人)由饼图可知:“不了解”的概率为,故1200名学生中“不了解”的人数为(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为共8种.∴考点:1、扇形统计图,2、条形统计图,3、概率25、(1)点A在直线l上,理由见解析;(2)≤t≤4.【解析】

(1)由题意得点B、A坐标,把点A的横坐标x=-1代入解析式y=2x+4得出y的值,即可得出点A在直线l上;(2)当直线l经过点D时,设l的解析式代入数值解出即可【详解】(1)此时点A在直线l上.∵BC=AB=2,点O为BC中点,∴点B(-1,0),A(-1,2).把点A的横坐标x=-1代入解析式y=2x+4,得y=2,等于点A的纵坐标2,∴此时点A在直线l上.(2)由题意可得,点D(1,2),及点M(-2,0),当直线l经过点D时,设l的解析式为y=k

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论