2022届福建省泉州聚龙外国语校中考联考数学试题含解析_第1页
2022届福建省泉州聚龙外国语校中考联考数学试题含解析_第2页
2022届福建省泉州聚龙外国语校中考联考数学试题含解析_第3页
2022届福建省泉州聚龙外国语校中考联考数学试题含解析_第4页
2022届福建省泉州聚龙外国语校中考联考数学试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022届福建省泉州聚龙外国语校中考联考数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(共10小题,每小题3分,共30分)1.在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣2.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A. B. C. D.3.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×1084.在同一直角坐标系中,二次函数y=x2与反比例函数y=1x(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3A.1B.mC.m2D.15.下列各式中,不是多项式2x2﹣4x+2的因式的是()A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)6.九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是()A. B. C. D.7.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是(

)A.1 B.2 C.3 D.48.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.9.下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查10.实数在数轴上的点的位置如图所示,则下列不等关系正确的是()A.a+b>0 B.a-b<0 C.<0 D.>二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在△ABC中,∠C=90°,AC=8,BC=6,点D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使点A落在点A′处,当A′E⊥AC时,A′B=____.12.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长____cm.13.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.14.已知:如图,AB是⊙O的直径,弦EF⊥AB于点D,如果EF=8,AD=2,则⊙O半径的长是_____.15.如图,量角器的0度刻度线为,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点,直尺另一边交量角器于点,,量得,点在量角器上的读数为,则该直尺的宽度为____________.16.被历代数学家尊为“算经之首”的九章算术是中国古代算法的扛鼎之作九章算术中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻一雀一燕交而处,衡适平并燕、雀重一斤问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻将一只雀、一只燕交换位置而放,重量相等只雀、6只燕重量为1斤问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为______.三、解答题(共8题,共72分)17.(8分)计算下列各题:(1)tan45°−sin60°•cos30°;(2)sin230°+sin45°•tan30°.18.(8分)如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.求点B的坐标;若△ABC的面积为4,求的解析式.19.(8分)对于某一函数给出如下定义:若存在实数p,当其自变量的值为p时,其函数值等于p,则称p为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q称为这个函数的不变长度.特别地,当函数只有一个不变值时,其不变长度q为零.例如:下图中的函数有0,1两个不变值,其不变长度q等于1.(1)分别判断函数y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数y=2x2-bx.①若其不变长度为零,求b的值;②若1≤b≤3,求其不变长度q的取值范围;(3)记函数y=x2-2x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G2,函数G的图象由G1和G2两部分组成,若其不变长度q满足0≤q≤3,则m的取值范围为.20.(8分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字1,2,3,4,5,6,如图2,正方形ABCD的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落在圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落得圈B;…设游戏者从圈A起跳.小贤随机掷一次骰子,求落回到圈A的概率P1.小南随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出他与小贤落回到圈A的可能性一样吗?21.(8分)如图,已知点在反比例函数的图象上,过点作轴,垂足为,直线经过点,与轴交于点,且,.求反比例函数和一次函数的表达式;直接写出关于的不等式的解集.22.(10分)如图,在直角三角形ABC中,(1)过点A作AB的垂线与∠B的平分线相交于点D(要求:尺规作图,保留作图痕迹,不写作法);(2)若∠A=30°,AB=2,则△ABD的面积为.23.(12分)先化简代数式:,再代入一个你喜欢的数求值.24.如图,在平面直角坐标系中,直线经过点和,双曲线经过点B.(1)求直线和双曲线的函数表达式;(2)点C从点A出发,沿过点A与y轴平行的直线向下运动,速度为每秒1个单位长度,点C的运动时间为t(0<t<12),连接BC,作BD⊥BC交x轴于点D,连接CD,①当点C在双曲线上时,求t的值;②在0<t<6范围内,∠BCD的大小如果发生变化,求tan∠BCD的变化范围;如果不发生变化,求tan∠BCD的值;③当时,请直接写出t的值.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】

根据正数大于0,0大于负数,正数大于负数,比较即可【详解】∵-3<-<0<0.3∴最大为0.3故选A.【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.2、A【解析】

分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.3、C【解析】

依据科学记数法的含义即可判断.【详解】解:48511111=4.85×117,故本题选择C.【点睛】把一个数M记成a×11n(1≤|a|<11,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是1的数字前1的个数,包括整数位上的1.4、D【解析】

本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=m或x=-m.令反比例函数中y=m,即1x=m,解得x=1m,将x的三个值相加得到ω=m+(-m)+【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.5、D【解析】

原式分解因式,判断即可.【详解】原式=2(x2﹣2x+1)=2(x﹣1)2。故选:D.【点睛】考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6、C【解析】试题分析:由题意可得,第一小组对应的圆心角度数是:×360°=72°,故选C.考点:1.扇形统计图;2.条形统计图.7、C【解析】∵四边形ABCD是正方形,∴AD=BC,∠DAB=∠ABC=90°,∵BP=CQ,∴AP=BQ,在△DAP与△ABQ中,,∴△DAP≌△ABQ,∴∠P=∠Q,∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90°,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴,∴AO2=OD•OP,∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∴△CQF≌△BPE,∴CF=BE,∴DF=CE,在△ADF与△DCE中,,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4,∵△AOP∽△DAP,∴,∴BE=,∴QE=,∵△QOE∽△PAD,∴,∴QO=,OE=,∴AO=5﹣QO=,∴tan∠OAE==,故④正确,故选C.点睛:本题考查了相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,三角函数的定义,熟练掌握全等三角形的判定和性质是解题的关键.8、D【解析】

根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.9、D【解析】

由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.由此,对各选项进行辨析即可.【详解】A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、C【解析】

根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【详解】解:由数轴,得b<-1,0<a<1.A、a+b<0,故A错误;B、a-b>0,故B错误;C、<0,故C符合题意;D、a2<1<b2,故D错误;故选C.【点睛】本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.二、填空题(本大题共6个小题,每小题3分,共18分)11、或7【解析】

分两种情况:①如图1,作辅助线,构建矩形,先由勾股定理求斜边AB=10,由中点的定义求出AD和BD的长,证明四边形HFGB是矩形,根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得:∠DA'E=∠A,A'D=AD=5,由矩形性质和勾股定理可以得出结论:A'B=;②如图2,作辅助线,构建矩形A'MNF,同理可以求出A'B的长.【详解】解:分两种情况:如图1,过D作DG⊥BC与G,交A'E与F,过B作BH⊥A'E与H,D为AB的中点,BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四边形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如图2,过D作MN//AC,交BC与于N,过A'作A'F//AC,交BC的延长线于F,延长A'E交直线DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四边形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;综上所述,A'B的长为或.故答案为:或.【点睛】本题主要考查三角形翻转后的性质,注意不同的情况需分情况讨论.12、13【解析】试题解析:因为正方形AECF的面积为50cm2,所以因为菱形ABCD的面积为120cm2,所以所以菱形的边长故答案为13.13、【解析】

首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的由4种情况,∴两次摸出的球都是红球的概率是,故答案为.【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.14、1.【解析】试题解析:连接OE,如下图所示,则:OE=OA=R,∵AB是⊙O的直径,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R-2)2+42,∴R=1.考点:1.垂径定理;2.解直角三角形.15、【解析】

连接OC,OD,OC与AD交于点E,根据圆周角定理有根据垂径定理有:解直角即可.【详解】连接OC,OD,OC与AD交于点E,直尺的宽度:故答案为【点睛】考查垂径定理,熟记垂径定理是解题的关键.16、【解析】

设雀、燕每1只各重x斤、y斤,根据等量关系:今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤,列出方程组求解即可.【详解】设雀、燕每1只各重x斤、y斤,根据题意,得整理,得故答案为【点睛】考查二元一次方程组得应用,解题的关键是分析题意,找出题中的等量关系.三、解答题(共8题,共72分)17、(1);(2).【解析】

(1)原式=1﹣×=1﹣=;(2)原式=×+×=.【点睛】本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.18、(1)(0,3);(2).【解析】

(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;(2)由=BC•OA,得到BC=4,进而得到C(0,-1).设的解析式为,把A(2,0),C(0,-1)代入即可得到的解析式.【详解】(1)在Rt△AOB中,∵,∴,∴OB=3,∴点B的坐标是(0,3).(2)∵=BC•OA,∴BC×2=4,∴BC=4,∴C(0,-1).设的解析式为,把A(2,0),C(0,-1)代入得:,∴,∴的解析式为是.考点:一次函数的性质.19、详见解析.【解析】试题分析:(1)根据定义分别求解即可求得答案;(1)①首先由函数y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不变长度为零,求得答案;②由①,利用1≤b≤3,可求得其不变长度q的取值范围;(3)由记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,可得函数G的图象关于x=m对称,然后根据定义分别求得函数的不变值,再分类讨论即可求得答案.试题解析:解:(1)∵函数y=x﹣1,令y=x,则x﹣1=x,无解;∴函数y=x﹣1没有不变值;∵y=x-1=,令y=x,则,解得:x=±1,∴函数的不变值为±1,q=1﹣(﹣1)=1.∵函数y=x1,令y=x,则x=x1,解得:x1=2,x1=1,∴函数y=x1的不变值为:2或1,q=1﹣2=1;(1)①函数y=1x1﹣bx,令y=x,则x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵记函数y=x1﹣1x(x≥m)的图象为G1,将G1沿x=m翻折后得到的函数图象记为G1,∴函数G的图象关于x=m对称,∴G:y=.∵当x1﹣1x=x时,x3=2,x4=3;当(1m﹣x)1﹣1(1m﹣x)=x时,△=1+8m,当△<2,即m<﹣时,q=x4﹣x3=3;当△≥2,即m≥﹣时,x5=,x6=.①当﹣≤m≤2时,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合题意,舍去);②∵当x5=x4时,m=1,当x6=x3时,m=3;当2<m<1时,x3=2(舍去),x4=3,此时2<x5<x4,x6<2,q=x4﹣x6>3(舍去);当1≤m≤3时,x3=2(舍去),x4=3,此时2<x5<x4,x6>2,q=x4﹣x6<3;当m>3时,x3=2(舍去),x4=3(舍去),此时x5>3,x6<2,q=x5﹣x6>3(舍去);综上所述:m的取值范围为1≤m≤3或m<﹣.点睛:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.注意掌握分类讨论思想的应用是解答此题的关键.20、(1)落回到圈A的概率P1【解析】

(1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;

(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.【详解】(1)∵掷一次骰子有6种等可能的结果,只有掷的4时,才会落回到圈A,∴落回到圈A的概率P1(2)列表得:1234561((((((2((((((3((((((4((((((5((((((6((((((∵共有36种等可能的结果,当两次掷得的数字之和为4的倍数,即(1,3)(2,2)(2,6∴p2∵P1∴可能性不一样【点睛】本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.21、(1)y=-.y=x-1.(1)x<2.【解析】分析:(1)根据待定系数法即可求出反比例函数和一次函数的表达式.详解:(1)∵,点A(5,2),点B(2,3),

又∵点C在y轴负半轴,点D在第二象限,

∴点C的坐标为(2,-1),点D的坐标为(-1,3).

∵点在反比例函数y=的图象上,

∴反比例函数的表达式为

将A(5,2)、B(2,-1)代入y=kx+b,

,解得:∴一次函数的表达式为.

(1)将代入,整理得:

∴一次函数图象与反比例函数图象无交点.

观察图形,可知:当x<2时,反比例函数图象在一次函数图象上方,

∴不等式>kx+b的解集为x<2.点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22、(1)见解析(2)【解析】

(1)分别作∠ABC的平分线和过点A作AB的垂线,它们的交点为D点;(2)利用角平分线定义得到∠ABD=30°,利用含30度的直角三角形三边的关系得到AD=AB=,然后利用三角形面积公式求解.【详解】解:(1)如图,点D为所作;(2)∵∠CAB=30°,∴∠ABC=60°.∵BD为角平分线,∴∠ABD=30°.∵DA⊥AB,∴∠DAB=90°.在Rt△ABD中,AD=AB=,∴△ABD的面积=×2×=.故答案为.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论