![重庆市南川中学2021-2022学年毕业升学考试模拟卷数学卷含解析_第1页](http://file4.renrendoc.com/view4/M02/3E/25/wKhkGGZWbbyAVEntAAGUBmCr1gw648.jpg)
![重庆市南川中学2021-2022学年毕业升学考试模拟卷数学卷含解析_第2页](http://file4.renrendoc.com/view4/M02/3E/25/wKhkGGZWbbyAVEntAAGUBmCr1gw6482.jpg)
![重庆市南川中学2021-2022学年毕业升学考试模拟卷数学卷含解析_第3页](http://file4.renrendoc.com/view4/M02/3E/25/wKhkGGZWbbyAVEntAAGUBmCr1gw6483.jpg)
![重庆市南川中学2021-2022学年毕业升学考试模拟卷数学卷含解析_第4页](http://file4.renrendoc.com/view4/M02/3E/25/wKhkGGZWbbyAVEntAAGUBmCr1gw6484.jpg)
![重庆市南川中学2021-2022学年毕业升学考试模拟卷数学卷含解析_第5页](http://file4.renrendoc.com/view4/M02/3E/25/wKhkGGZWbbyAVEntAAGUBmCr1gw6485.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市南川中学2021-2022学年毕业升学考试模拟卷数学卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,点D、E分别在边AB、AC的反向延长线上,下面比例式中,不能判定ED//BC的是()A. B.C. D.2.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.3.下列运算正确的是()A.a2•a4=a8 B.2a2+a2=3a4 C.a6÷a2=a3 D.(ab2)3=a3b64.如图,在中,分别在边边上,已知,则的值为()A. B. C. D.5.如图是由5个大小相同的正方体组成的几何体,则该几何体的左视图是()A. B.C. D.6.如图,的三边的长分别为20,30,40,点O是三条角平分线的交点,则等于()A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶57.若(x﹣1)0=1成立,则x的取值范围是()A.x=﹣1 B.x=1 C.x≠0 D.x≠18.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x="1".其中正确的有A.1个 B.2个 C.3个 D.4个9.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是()A.6 B.3.5 C.2.5 D.110.将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140° B.160° C.170° D.150°11.二次函数y=ax2+bx+c(a≠0)的图象如图,a,b,c的取值范围()A.a<0,b<0,c<0B.a<0,b>0,c<0C.a>0,b>0,c<0D.a>0,b<0,c<012.化简的结果为()A.﹣1 B.1 C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有一枚质地均匀的骰子,六个面分别表有1到6的点数,任意将它抛掷两次,并将两次朝上面的点数相加,则其和小于6的概率是______.14.化简:x2-4x+4x15.化简的结果等于__.16.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:x…﹣5﹣4﹣3﹣2﹣1…y…﹣8﹣3010…当y<﹣3时,x的取值范围是_____.17.如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为________.18.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作☉O,交BD于点E,连接CE,过D作DFAB于点F,∠BCD=2∠ABD.(1)求证:AB是☉O的切线;(2)若∠A=60°,DF=,求☉O的直径BC的长.20.(6分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.若a=2,b=﹣1,直接写出a,b的“如意数”c;如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.21.(6分)先化简再求值:,其中,.22.(8分)综合与探究如图,抛物线y=﹣与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,直线l经过B,C两点,点M从点A出发以每秒1个单位长度的速度向终点B运动,连接CM,将线段MC绕点M顺时针旋转90°得到线段MD,连接CD,BD.设点M运动的时间为t(t>0),请解答下列问题:(1)求点A的坐标与直线l的表达式;(2)①直接写出点D的坐标(用含t的式子表示),并求点D落在直线l上时的t的值;②求点M运动的过程中线段CD长度的最小值;(3)在点M运动的过程中,在直线l上是否存在点P,使得△BDP是等边三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.23.(8分)如图,在△ABC中,∠BAC=90°,AB=AC,D为AB边上一点,连接CD,过点A作AE⊥CD于点E,且交BC于点F,AG平分∠BAC交CD于点G.求证:BF=AG.24.(10分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)25.(10分)(1)计算:(﹣2)﹣2+cos60°﹣(﹣2)0;(2)化简:(a﹣)÷.26.(12分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,求BD的长.27.(12分)如图,正方形ABCD中,BD为对角线.(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);(2)在(1)的条件下,若AB=4,求△DEF的周长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
根据平行线分线段成比例定理推理的逆定理,对各选项进行逐一判断即可.【详解】A.当时,能判断;B.
当时,能判断;C.
当时,不能判断;D.
当时,,能判断.故选:C.【点睛】本题考查平行线分线段成比例定理推理的逆定理,根据定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.能根据定理判断线段是否为对应线段是解决此题的关键.2、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.3、D【解析】根据同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方运算法则逐一计算作出判断:A、a2•a4=a6,故此选项错误;B、2a2+a2=3a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(ab2)3=a3b6,故此选项正确..故选D.考点:同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方与积的乘方.4、B【解析】
根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.【详解】解:∵,
∴,
∵DE∥BC,
∴△ADE∽△ABC,
∴,
故选:B.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.5、B【解析】
找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从左面看易得下面一层有2个正方形,上面一层左边有1个正方形.故选:B.【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6、C【解析】
作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,根据角平分线的性质得到OD=OE=OF,根据三角形的面积公式计算即可.【详解】作OF⊥AB于F,OE⊥AC于E,OD⊥BC于D,
∵三条角平分线交于点O,OF⊥AB,OE⊥AC,OD⊥BC,
∴OD=OE=OF,
∴S△ABO:S△BCO:S△CAO=AB:BC:CA=20:30:40=2:3:4,
故选C.【点睛】考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7、D【解析】试题解析:由题意可知:x-1≠0,
x≠1
故选D.8、B【解析】试题分析:∵当y1=y2时,即时,解得:x=0或x=2,∴由函数图象可以得出当x>2时,y2>y1;当0<x<2时,y1>y2;当x<0时,y2>y1.∴①错误.∵当x<0时,-直线的值都随x的增大而增大,∴当x<0时,x值越大,M值越大.∴②正确.∵抛物线的最大值为4,∴M大于4的x值不存在.∴③正确;∵当0<x<2时,y1>y2,∴当M=2时,2x=2,x=1;∵当x>2时,y2>y1,∴当M=2时,,解得(舍去).∴使得M=2的x值是1或.∴④错误.综上所述,正确的有②③2个.故选B.9、C【解析】
因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,
处于中间位置的数是4,
∴中位数是4,
平均数为(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列顺序;
(2)将这组数据从小到大的顺序排列后2,3,4,x,5,
中位数是4,
此时平均数是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列顺序;
(3)将这组数据从小到大的顺序排列后2,3,x,4,5,
中位数是x,
平均数(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列顺序;
(4)将这组数据从小到大的顺序排列后2,x,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,不符合排列顺序;
(5)将这组数据从小到大的顺序排列后x,2,3,4,5,
中位数是3,
平均数(2+3+4+5+x)÷5=3,
解得x=1,符合排列顺序;
∴x的值为6、3.5或1.
故选C.【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.10、B【解析】试题分析:根据∠AOD=20°可得:∠AOC=70°,根据题意可得:∠BOC=∠AOB+∠AOC=90°+70°=160°.考点:角度的计算11、D【解析】试题分析:根据二次函数的图象依次分析各项即可。由抛物线开口向上,可得,再由对称轴是,可得,由图象与y轴的交点再x轴下方,可得,故选D.考点:本题考查的是二次函数的性质点评:解答本题的关键是熟练掌握二次函数的性质:的正负决定抛物线开口方向,对称轴是,C的正负决定与Y轴的交点位置。12、B【解析】
先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【详解】解:.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】
列举出所有情况,看两个骰子向上的一面的点数和小于6的情况占总情况的多少即可.【详解】解:列表得:
两个骰子向上的一面的点数和小于6的有10种,
则其和小于6的概率是,
故答案为:.【点睛】本题考查了列表法与树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件树状图法适用于两步或两步以上完成的事件解题时还要注意是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比.14、﹣x-2x【解析】
直接利用分式的混合运算法则即可得出.【详解】原式====-x-2故答案为:-x-2【点睛】此题主要考查了分式的化简,正确掌握运算法则是解题关键.15、.【解析】
先通分变为同分母分式,然后根据分式的减法法则计算即可.【详解】解:原式.故答案为:.【点睛】此题考查的是分式的减法,掌握分式的减法法则是解决此题的关键.16、x<﹣4或x>1【解析】
观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y<-3时,x的取值范围即可.【详解】由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,且x=1时,y=-3,所以,y<-3时,x的取值范围为x<-4或x>1.故答案为x<-4或x>1.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键.17、1【解析】
如图,由勾股定理可以先求出AB的值,再证明△AED∽△ACB,根据相似三角形的性质就可以求出结论.【详解】在Rt△ABC中,由勾股定理.得AB==10,∵DE⊥AB,∴∠AED=∠C=90°.∵∠A=∠A,∴△AED∽△ACB,∴,∴,∴AD=1.故答案为1【点睛】本题考查了勾股定理的运用,相似三角形的判定及性质的运用,解答时求出△AED∽△ACB是解答本题的关键.18、2【解析】
根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”求出ab的值即可.【详解】∵点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案为2.【点睛】本题考查了关于x轴,y轴对称的点的坐标,解题的关键是熟练的掌握关于y轴对称的点的坐标的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)证明过程见解析;(2)【解析】
(1)根据CB=CD得出∠CBD=∠CDB,然后结合∠BCD=2∠ABD得出∠ABD=∠BCE,从而得出∠CBD+∠ABD=∠CBD+∠BCE=90°,然后得出切线;(2)根据Rt△AFD和Rt△BFD的性质得出AF和DF的长度,然后根据△ADF和△ACB相似得出相似比,从而得出BC的长度.【详解】(1)∵CB=CD∴∠CBD=∠CDB又∵∠CEB=90°∴∠CBD+∠BCE=∠CDE+∠DCE∴∠BCE=∠DCE且∠BCD=2∠ABD∴∠ABD=∠BCE∴∠CBD+∠ABD=∠CBD+∠BCE=90°∴CB⊥AB垂足为B又∵CB为直径∴AB是⊙O的切线.(2)∵∠A=60°,DF=∴在Rt△AFD中得出AF=1在Rt△BFD中得出DF=3∵∠ADF=∠ACB∠A=∠A∴△ADF∽△ACB∴即解得:CB=考点:(1)圆的切线的判定;(2)三角函数;(3)三角形相似的判定20、(1)4;(2)详见解析.【解析】
(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可.【详解】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点睛】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.21、8【解析】
原式第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,合并得到最简结果,将x与y的值代入计算即可求出值.【详解】原式==,当,时,原式=【点睛】本题考查了整式的混合运算-化简求值,涉及的知识有:完全平方公式、单项式乘以多项式、去括号法则以及合并同类项法则,熟练掌握公式及法则是解本题的关键.22、(1)A(﹣3,0),y=﹣x+;(2)①D(t﹣3+,t﹣3),②CD最小值为;(3)P(2,﹣),理由见解析.【解析】
(1)当y=0时,﹣=0,解方程求得A(-3,0),B(1,0),由解析式得C(0,),待定系数法可求直线l的表达式;(2)分当点M在AO上运动时,当点M在OB上运动时,进行讨论可求D点坐标,将D点坐标代入直线解析式求得t的值;线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,根据勾股定理可求点M运动的过程中线段CD长度的最小值;(3)分当点M在AO上运动时,即0<t<3时,当点M在OB上运动时,即3≤t≤4时,进行讨论可求P点坐标.【详解】(1)当y=0时,﹣=0,解得x1=1,x2=﹣3,∵点A在点B的左侧,∴A(﹣3,0),B(1,0),由解析式得C(0,),设直线l的表达式为y=kx+b,将B,C两点坐标代入得b=mk﹣,故直线l的表达式为y=﹣x+;(2)当点M在AO上运动时,如图:由题意可知AM=t,OM=3﹣t,MC⊥MD,过点D作x轴的垂线垂足为N,∠DMN+∠CMO=90°,∠CMO+∠MCO=90°,∴∠MCO=∠DMN,在△MCO与△DMN中,,∴△MCO≌△DMN,∴MN=OC=,DN=OM=3﹣t,∴D(t﹣3+,t﹣3);同理,当点M在OB上运动时,如图,OM=t﹣3,△MCO≌△DMN,MN=OC=,ON=t﹣3+,DN=OM=t﹣3,∴D(t﹣3+,t﹣3).综上得,D(t﹣3+,t﹣3).将D点坐标代入直线解析式得t=6﹣2,线段CD是等腰直角三角形CMD斜边,若CD最小,则CM最小,∵M在AB上运动,∴当CM⊥AB时,CM最短,CD最短,即CM=CO=,根据勾股定理得CD最小;(3)当点M在AO上运动时,如图,即0<t<3时,∵tan∠CBO==,∴∠CBO=60°,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=3﹣t,AN=t+,NB=4﹣t﹣,tan∠NBO=,=,解得t=3﹣,经检验t=3﹣是此方程的解,过点P作x轴的垂线交于点Q,易知△PQB≌△DNB,∴BQ=BN=4﹣t﹣=1,PQ=,OQ=2,P(2,﹣);同理,当点M在OB上运动时,即3≤t≤4时,∵△BDP是等边三角形,∴∠DBP=∠BDP=60°,BD=BP,∴∠NBD=60°,DN=t﹣3,NB=t﹣3+﹣1=t﹣4+,tan∠NBD=,=,解得t=3﹣,经检验t=3﹣是此方程的解,t=3﹣(不符合题意,舍).故P(2,﹣).【点睛】考查了二次函数综合题,涉及的知识点有:待定系数法,勾股定理,等腰直角三角形的性质,等边三角形的性质,三角函数,分类思想的运用,方程思想的运用,综合性较强,有一定的难度.23、见解析【解析】
根据角平分线的性质和直角三角形性质求∠BAF=∠ACG.进一步证明△ABF≌△CAG,从而证明BF=AG.【详解】证明:∵∠BAC=90°,,AB=AC,∴∠B=∠ACB=45°,又∵AG平分∠BAC,∴∠GAC=∠BAC=45°,又∵∠BAC=90°,AE⊥CD,∴∠BAF+∠ADE=90°,∠ACG+∠ADE=90°,∴∠BAF=∠ACG.又∵AB=CA,∴∴△ABF≌△CAG(ASA),∴BF=AG【点睛】此题重点考查学生对三角形全等证明的理解,熟练掌握两三角形全等的证明是解题的关键.24、见解析.【解析】试题分析:先做出∠AOB的角平分线,再求出线段MN的垂直平分线就得到点P.试题解析:考点:尺规作图角平分线和线段的垂直平分线、圆的性质.25、(1);
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年5月幼儿园教师工作总结(3篇)
- 施工合同心得(3篇)
- 2024-2025年云南省德宏傣族景颇族自治州民族第一中学高一上学期第二次月考历史试卷
- 2025年化工石油工程施工合同示范文本
- 2025年专项授权合同文本
- 2025年住宅吊顶装修工程协议样本
- 2025年泰国旅游项目规划申请报告模板
- 2025年劳动合同签订解除法律规定
- 2025年高压清洗车项目申请报告模式
- 2025年最低生活保障服务项目立项申请报告模范
- 《上消化道出血诊疗指南》讲稿
- 内燃机车无火回送操作方法
- 电商部售后客服绩效考核表
- 小提琴协奏曲《梁祝》谱
- 人教版高中化学必修一第一章《物质及其变化》教学课件
- 复工复产工作方案范本【复产复工安全工作方案】
- HyperMesh100基础培训教程
- 奥太焊机维修教材MZ系列
- 财务会计实务教学课件汇总全套电子教案(完整版)
- 化工装置实用操作技术指南讲解
- 张齐华角的初步认识教学设计数学教学设计-角的初步认识
评论
0/150
提交评论