版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
IncreasingElectricPowerSystemFlexibility
TheRoleofIndusTRIalelecTRIfIcaTIonandGReenhydRoGenPRoducTIon
AReportofthe
ES
EnErgySyStEmSIntEgratIongroup
EnergySystemsIntegrationGroup’s
FlexibilityResourcesTaskForce
January2022
1
ESIG
IP
AboutESIG
TheEnergySystemsIntegrationGroupisanonprofitorganization
thatmarshalstheexpertiseoftheelectricityindustry’stechnical
communitytosupportgridtransformationandenergysystems
integrationandoperation.Moreinformationisavailableat
https://www.esig.energy
.
ESIGPublicationsAvailableOnline
Thisreportisavailableat
https://www.esig.energy/
reports-briefs.
GetinTouch
Tolearnmoreaboutthetopicsdiscussedinthisreportorformore
informationabouttheEnergySystemsIntegrationGroup,please
sendanemailto
info@esig.energy
.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupii
IncreasingElectricPowerSystemFlexibility:TheRoleofIndustrialElectrificationand
GreenHydrogenProduction
AReportoftheFlexibilityResourcesTaskForce
oftheEnergySystemsIntegrationGroup
Preparedby
AidanTuohy,ElectricPowerResearchInstitute
NiallMacDowell,ImperialCollegeLondon
TaskForceMembers
WilliamD’haeseleer,KULeuven
ElizabethEndler,Shell
AnthonyKu,NICEAmericaResearch
NiallMacDowell,ImperialCollegeLondon
PierluigiMancarella,UniversityofMelbourne
JuliaMatevosyan,EnergySystemsIntegrationGroup
TobyPrice,AustralianElectricityMarketOperator
AidanTuohy,ElectricPowerResearchInstitute
SuggestedCitation
FlexibilityResourcesTaskForce.2022.IncreasingElectricPowerSystemFlexibility:TheRoleofIndustrialElectrificationandGreenHydrogenProduction.Reston,VA:EnergySystemsIntegrationGroup.
https://www.esig.energy/
reports-briefs.
Thisworkwassupportedbyfundsfromthe
AmericanCouncilonRenewableEnergy(ACORE).
Thetaskforcewouldliketoacknowledgethevaluableinput
andsupportofKarinMatchettinpreparingthisreport.
Design:DavidGerratt/NonprofitD
©2022EnergySystemsIntegrationGroup
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupiii
Contents
1EvolvingReliabilityNeedsforaDecarbonizedGrid
1ACriticalNeedforNewSourcesofFlexibility
2ServicesProvidedbyIndustrialElectrificationandElectrolyticHydrogenProductiontotheElectricitySystem
3IndustrialElectrificationandElectricPowerSystemFlexibility
3ElectricityUseinIndustryToday
3PathwaysforContributionofEIIstoDecarbonization
8ProvisionofFlexibilityfromEnergy-IntensiveIndustries
8IncreasedDemandasaResultofIncreasedElectrificationofIndustry
9ProvisionofDemandResponseviaIndustrialLoads
10ProvisionofGridServices
11BarrierstotheProvisionofFlexibilitybyNewlyElectrifiedLoads
12RoleofHydrogenProductioninGridDecarbonizationandFlexibility
13PotentialApplicationsofHydrogeninthePowerSystem
14ConsiderationsforObtainingFlexibilityfromGreenHydrogen
inaFutureHigh-RenewablesGrid
17ProvisionofGridServices
21AdvancesNeededinSystemPlanning,Operations,andMarketDesign
24References
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroupiv
EvolvingReliabilityNeeds
foraDecarbonizedGrid
A
selectricpowersystemscontinuetodecarbonizeandlevelsofrenewableenergycontinuetorise,sourcesofsystemflexibilitywillbecomeincreas-inglyimportant.Asflexibilityfromtraditionalresourcesmaybereducedwiththeretirementofconventional
coal-andnaturalgas–firedgeneration,othersources
suchasdemand-sideflexibilitywillbecomemuchmoreimportant.Concurrently,theincreasedelectrificationoftheoverallenergysystemwillcreatenewloadson
theelectricpowersystem,whichwillhavethepotentialtocontributetosuchsystemflexibility.
Akeyissueforelectricitysystemoperationsandplan-ningistowhatextentthenewloadsmaycontributetosystemflexibility:whetherandhowtheseloadscanshiftelectricalenergydemandfromperiodswhenrenewableelectricityislessabundanttoperiodswhenthereis
alargeamountavailable.
ACriticalNeedforNewSources
ofFlexibility
Manydecarbonizationstudiesdemonstratetheincreas-ingimportanceofthisflexibilityascleanenergy,particu-larlyvariablerenewablessuchaswindandsolar,becomesalargerportionoftheresourcemix(EPRI,2021;Larsonetal.,2020;Williamsetal.,2021).Forexample,hydro-genproductionandtheelectrificationofindustrialloadsareoftencitedasimportantsourcesofflexibilityaslevelsofrenewablessurpass80or90percentoftotalelectricity(EPRI,2021).Atsuchhighlevelsofrenewables,the
needtoshiftenergyacrosstime(andpotentiallyspace),aswellastheexpectedretirementofexistingsources
offlexibility,meansthatelectricpowersystemflexibilityfromthetypicalsourcestoday—conventionalnaturalgasplants,batteries,interconnectionwithneighboringgrids,
andrenewablesthemselves—mayneedtobesupple-
mentedwithnewsources.
Theneedforflexibilitystemsfromtwoissuesrelated
tosupplyanddemandbalancingofelectricitysystems
thatarereliantonvariablerenewableelectricitygen-
eration:oversupplyofgeneration,andstructuralenergydeficitsduetothevariabilityassociatedwithrenewablegeneration(EPRI,2016).Thefirstissuearisesfromthelimitedcapacityfactorsofwindandsolar.Highelectri-cal-energypenetrationofnaturallyvariablesourcessuchaswindandsolarphotovoltaicscouldresultinsubstan-tialovercapacitycomparedtothepeakloadoftheelec-tricalpowersystem,which,intheabsenceofdedicatedmeasures,wouldleadtonegativenet,orresidual,loadin
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup1
Theabilitytoshiftdemandfromperiods
ofenergydeficitstoperiodswithmore
renewablesavailablecouldbeasignificantsourceofflexibility.Theneedforthisflex-ibilitywillberegion-specificanddependontheparticularmixofgeneration,transmis-sion,andloadontheelectricitysystem.
manyhours.1Whiletheinstantaneousexcesspower
generationcouldalwaysbecurtailed,analternativeistodivertthatelectricpowertosectorsoutsidetheclassicalelectricgridsystem.Thiswouldinvolveusingflexible
electricloadstoincreasedemandtomaintainthesupply/demandbalance.
Thesecondissue,energydeficits,canoccurinsystems
wheretherearelongperiodswithrelativelylittlewindorsolarpowercomparedtosystemdemand,duetoprevail-ingweatherconditions.(Thisislikelytobeparticularlyimportantforwindenergy,asdemonstratedrecently
intheUKandEUregionwherewindwasrelatively
lowforalongperiodoftime.)Insuchcircumstances,
resourcesthatarenotoftenusedwillneedtobeavailabletoprovideenergywhencalledupon.Theabilitytoshiftdemandfromperiodsofenergydeficitstoperiodswithmorerenewablesavailablecouldthereforebeasignifi-
cantsourceofflexibility.Theneedforthisflexibility
willberegion-specificanddependontheparticularmixofgeneration,transmission,andloadontheelectricitysystem.
Theabsolutequantityofflexiblecapacity(howeverde-fined)thatisrequiredtomanageoversupplyofrenew-ableenergyappearslow,givingopportunityforflexibilityviaindustrialelectrification,includinghydrogenproduc-tion,toplayanimportantrole.Currently,theelectrifica-tionofindustrialloadsishappeningslowly,andhydrogenproductionisstillrelativelyexpensive.However,cost
declinesarepredictedforbothoftheseresources,similartowhathasbeenachievedinrecentyearsforwind,solarphotovoltaics,andbatterystorage.In2021,theU.S.
DepartmentofEnergy,forexample,setagoalofreduc-ingthecostofelectrolytichydrogenby80percentto
$1perkilograminonedecade.2
ServicesProvidedbyIndustrial
ElectrificationandElectrolyticHydrogenProductiontotheElectricitySystem
Thisreportlaysoutviablewaysthatindustrialelectri-
ficationandhydrogenproductionmayplayarolein
providingflexibilityinthefutureelectricpowersystem.Whereasmostanalysisinthisspacefocusesontheover-allenergysystemandaspectssuchasthecostreductionrequiredtoenablemoreindustrialelectrificationand
hydrogen,thefocushereisondescribinghowthesetech-nologiesmayimpactandprovideservicestotheelectricpowersystem.Theunderlyingassumptionisafuture
wherelevelsofelectricity-generatingrenewablesare
high,at70percentannualenergypenetrationorhigher,asthisisthepointatwhichtheelectrificationofindus-trialprocessesandtheeconomicproductionofhydrogenwillbothbeneededandbereadytoservethisneed.
Theintentofthisreportistodiscusstheelectricpowersystemsperspectiveforthesenewelectricalloads.Build-ingontheEnergySystemsIntegrationGroup’swork
onrenewableintegrationoverthepastdecades,thisreportlaysouthowveryhighlevelsofrenewable
energycouldbesupportedbyleveragingopportu-nitiesintheindustrialsector.
Thereportfirstdiscussessourcesofindustrialelectrifi-
cationandthepotentialflexibilitythatcouldbederivedfromtheresultinglargeelectricalloadsinenergy-intensiveindustries(EIIs).Itthenexaminesthepotentialrole
ofhydrogenproductioninprovidingflexibilitytothefuturehigh-renewablessystem,withafocusongreenhydrogen.Thereportconcludesbysummarizinghigh-leveloperationsandplanningissuesforpowersystemsandidentifyingkeyareasneedingfurtherwork.
1Netload,orresidualload,aredefinedasthetotalloadminustheinstantaneousgenerationofsolarphotovoltaicsandwind.“Net”and“residual”canbeusedsynonymously.
2See
/eere/fuelcells/hydrogen-shot
.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup2
IndustrialElectrificationand
ElectricPowerSystemFlexibility
ity.Theyprovidethebasisformanychemicals
E
IIsareatthefoundationofthebroadereconomyandenableavastamountofotherindustrialactiv-
usedinindustry,produceconstructionmaterials,supportagricultureandpaperindustries,andfarmore.Theylinktoallothereconomicsectors,arethemselvesextensivelyinterlinked,andaredeeplyconnectedwithinthebroaderenergysystem(seeFigure1,p.4).EIIsareoftenvery
carbon-intensive,andtheycanbehardertodecarbonizethanothersectorssuchastheelectricitysector.One
optionfortheirdecarbonizationistoelectrifytheseindustrialloadsandrelyoncleanelectricitytopowertheloads.Thisisnotsimple,however.Anysignificantchangeintheprovisionofenergyintheseindustries,theiroperation,andtheircoststructurewillhave
profoundandsystemicramificationsacrossthebroadereconomy(Lovins,2021a;2021b).
ElectricityUseinIndustryToday
Theshareofelectricityamongallenergyinputsintheindustrialsectorvarieswidely,withageneralshifttowardincreasedelectricityuseintheindustrialsectorexpectedintheneartomediumterm.Thelowestshare,at14per-cent,isinnon-metallicminerals(mostlycement,glass,andceramicsindustries),andthehighestshareof65percentisinnon-ferrousmetals,composedmostlyofprimary
aluminumproductionthatuseselectrolysistoreduce
aluminumfromaluminumoxide.Electricityismostlyusedformachinedrives,toprovideelectricalcontrol
ofindustrialprocesses,andforsomemeansofelectric
heating(includingelectricarc,infraredradiation,elec-tronbeam,andplasmaheating).Someindustrialelectrictechnologiesuseelectricityasanalternativetodirectlyprovidingheat,forexample,usingmechanicalwork
inmechanicalvaporrecompressionheatpumpsorseparatingmaterialsusingselectivelypermeable
membranesratherthanusingheat.Othermeansof
materialseparationuseelectricpotentialgradients(e.g.,electrodialysis)orelectrolysis(e.g.,electrolyticrefiningofaluminaandcopper).Theincreasingdemandforrenew-ableenergytechnologywillitselfleadtoageneralshifttowardhigherelectricityuseintheindustrialsectorduetotheincreasedproductionandrefiningofrareearth
elementsandpotentialincreaseintherecyclingofmetals.
PathwaysforContributionofEIIs
toDecarbonization
Currently,industryaccountsformorethanone-thirdoftheglobalfinalenergyuse,makingitanessentialsectortodecarbonize.However,EIIs,owingtotheirheteroge-neityandtheneedforhigh-qualityheattotransform
rawmaterialsintomorerefinedmaterials,areparticularlychallengingtodecarbonize.Incontrasttotheelectric
powersector,wherelow-carbonelectricityisusedby
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup3
FIGuRE1
ConnectionsBetweenEnergy-IntensiveIndustriesandtheRestoftheEconomy
Note:TheredtextreferstotheEIIsdiscussedinthisreport.
Source:Wyns,Khandekar,andRobson(2018).
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup4
loadsinexactlythesamewayasfossilfuel–basedelec-tricity,theconceptofabaselineor“archetypal”industryfacilityisdifficulttodefine.Facilities’electricalandnon-electricalloads,operatingprocedures,andpracticesvaryfromlocationtolocationandhaveasignificanttime
dependenceregardingwhentheyareused.Inaddition,manyfacilitieswithinagivensectorusemultiplefuel
sourcesandhavemultiplepointsourcesofcarbondioxide(CO2).
ItisimportanttonotethatEIIshavealreadyplayedanimportantroleinemissionsreductions.Between1990and2015inEurope,EIIsreducedtheirgreenhouse
gasemissionsby36percent,representingapproximately28percentofeconomy-widereductions,despitethefact
thatEIIswereresponsibleforonly15percentoftotal
greenhousegasemissionsintheEuropeanUnionin
2015.Todate,EIIemissionsreductionshavecome
aboutthroughacombinationofimprovementsinenergyefficiency,fuelswitching,andplantclosuresorreducedoutput,largelyasaresultofthe2008financialcrisis.
Therearemanypathwaystofurtheremissionsreduc-
tions,asshowninTable1.Inadditiontofurtherenergyefficiencyimprovements,processintegration,andtheuseofcarboncapture,utilization,andstoragetechnologies(Wei,McMillan,anddelaRueduCan,2019),electri-ficationhasthebroadpotentialtocontributeacrossallsectors,throughbothheatandmechanicalprocesses
andthroughelectrolysisforhydrogenproduction.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup5
Heat
Alargeproportionofindustrialemissionsarisefromtheprovisionofheat(orthermalpower).Giventherapidlyimprovingeconomicsofrenewable/low-carbonelectricalpowerandenergystorage,theelectrificationofEII
heatingneedsisbecomingmoreattractiveasameanstodecarbonizethissector.Hightoveryhightemperatures(above500°C)accountforoverhalfofindustrialheat
demand,andveryhightemperatures(above1000°C)
accountfor33percentofdemand.Electrificationof
heatdemandcanbeappliedacrossmostbasicmaterialsindustries,anditisaparticularlypromisingapproachforemissionsmitigationinindustriessuchasceramics,glass,andpaper.Low-temperatureheat(definedhereaslowerthan300°C)canbeprovidedrelativelyeasilyviaelectricboilersandelectricarc,infrared,induction,dielectric,
directresistance,microwave,andelectronbeamheating.However,toeconomicallyachievetemperaturesapproaching
TABlE1
EmissionsReductionApproachesforVariousEnergy-IntensiveIndustries
Electrification(Heatand
Mechanical)
Electrification(Processes:
Electrolysis/
Electro-
chemistry
ExcludingH2)
Hydrogen(Heatand/orProcess)
Carbon
Capture
and
utilization
Biomass
(Heatand
Feedstock)/Biofuels
Carbon
Capture
and
Storage
Other
(IncludingProcess
Integration)
Steel
xxx
xx
xxx
xxx
x
xxx
Avoidanceofinter-
mediateprocess
stepsandrecycling
ofprocessgases:xxx
Recyclinghigh-qualitysteel:xxx
Chemicalsandfertil-izers
xxx
xxx
xxx
xxx
xxx
xxx(in
particular
foram-
moniaand
ethylene
oxide)
Useofwastestreams(chemicalrecycling):xxx
Cement
Lime
xx
(cement)
x
(lime)
o
(cement)
o
(lime)
x
(cementand
lime)
xxx
(cementandlime)
xxx
(cement)
x
(lime)
xxx
(cementandlime)
Alternativebinders
(cement):xxx
Efficientuseofcementinconcretebyimprovingconcretemixdesign:xxx
Useofwastestreams(cement):xxx
Refining
xx
o
xxx
xxx
xxx
xxx
Efficiency:xxx
Ceramics
xxx
o
xx
x
x
o
Efficiency:xxx
Paper
xx
o
o
o
xxx
o
Efficiency:xxx
Glass
xxx
o
x
o
xxx
o
Higherglassrecycling:xx
Non-
ferrous
metals/
alloys
xxx
xxx
x
x
xxx
x
Efficiency:xxx
Recyclinghighqualitynon-ferrous:xxx
Inertanodes:xxx
o=Limitedornosignificnatapplicationforeseen
x=Possibleapplicationbutnotmainrouteorwide-scaleapplication
xx=Mediumpotentialxxx=Highpotential
xxx=Sectoralreadyappliestechnologyonlargescale(canbeexpandedinsomecases)
Note:Evenafterdecarbonizingheatforcement,reaction-basedemissionsremain.
Source:Wyns,Khandekar,andRobson(2018).
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup6
1,000°C,modificationsofelectricfurnacetechnology
areneeded.Itistechnicallypossibletoelectrifyhigh-
temperatureprocessheatingusing,forexample,electricarcfurnacesorelectriccalciners.Toachievetemperaturesbeyond1,000°C,asisrequiredintheproductionof
cementandglass,significantadditionalresearch,development,anddemonstrationisrequired.
Giventhedeeplyintegratednatureoftheseprocesses,anyalterationtoaparticularelementofaprocesswill
necessarilyinducechangestootheraspects.Electrifica-tionofthefurnacethereforenecessitatesadjustments
tootherstagesofproductionandwillhavecapitalcostimplications.Insomesectors,suchastherefining,steel,chemicals,andcementsectors,theelectrificationofheatcanbeatbestapartialsolutionandwilllikelyhavetobeusedincombinationwithothertechnologiesto
achievefulldecarbonization.
IndustrialProcesses
Processelectrificationisalreadyquitewidelyappliedin,forexample,secondarysteel,non-ferrousmetals,ferro-alloys,andsiliconproduction.Theelectrificationofironandsteelproductioncantakeseveralpossibleroutesandisanareaofactiveinterestformanyintheindustry
(Edie,2021).Onerouteistoincreasethecircularityoftheproductflowintheeconomybyincreasingrecyclingratesandtheuseofsecondarysteel,whichisproducedinelectricarcfurnaces.Ingeneral,steelretainsasignificantoverallrecyclingrate.In2014,thisratestoodat85per-cent(TataSteel,2021);however,whendemandforsteelishigh,thisproportiondropssignificantly—in2016
itwas35.5percent—owingtoamismatchbetween
demandforsteelandavailabilityofscrap(BIR,2020).Lookingbeyondironandsteel,severalothermetals
areproducedthroughelectrolysis,includingaluminum,nickel,andzinc.Theeconomicviabilityofelectrolyticapproachestometalrefiningis,ofcourse,afunction
ofthecostandcarbonintensityofelectricityandthecostofelectrolyzers(Allanore,2014).
Anotheroptionforindirectdecarbonizationviaelectri-fication,asdiscussedinmoredetailinthenextsection,
Hydrogencanplayakeyroleinindustrial
decarbonizationwhenthehydrogenis
producedusingzero-carbonelectricityorfromnaturalgaswithcarboncaptureandstorage.Itcanbeusedasanenergycarrier,asindustrialfeedstockforproductsand
fuels,orforlong-durationenergystorage.
iselectrolytichydrogen.Hydrogencanplayakeyroleinindustrialdecarbonizationwhenthehydrogenispro-ducedusingzero-carbonelectricityorfromnaturalgaswithcarboncaptureandstorage.Itcanbeusedasan
energycarrier,asindustrialfeedstockforproductsandfuels,orforlong-durationenergystorage.
Keytocontinuingtodecarbonizeindustriesthrough
increasingtheelectrificationofindustrialprocesseswillbetheprogressionoftechnologiestotechnologyreadinesslevels(TRL)above7andthefurtherdecarbonizationoftheelectricitygrid.3Sufficienttechnologicalmaturityisnotexpecteduntilthe2030s,duetotheneedtodemon-stratethesetechnologiesandmobilizecapacitytodeploythem,butbythentheymayprovideafruitfulwayto
decarbonizethesystem.Economicincentivesortechno-logicalbreakthroughsmaymakethesetechnologiesrel-evantevensooner;however,2030isalreadywellwithintheplanningtimeframefortheelectricpowerindustry.
Themovetowardfuel-switchingfromnaturalgasto
electricitywillbedrivenbyenergyandenvironmental
policies(EPRI,2018);however,electrificationbenefits
forindustrialprocessingalsoincludenon-energybenefitssuchasproductqualityandyield;processtime,control-lability,andflexibility;andsafety.Forexample,potentialnon-energybenefitsininductionheatingincludefasterstart-up,enhancedprocesscontrollabilityandflexibility,reducedspacerequiredforfuelstorageandhandling,animprovedworkingenvironmentforworkersduetothe
eliminationofcombustionemissions,andlesswasteheat.
3TheTRLscalerunsfrom1through9,with1beingrelatedto(fundamental)researchand9referringtofulltechnologicalmaturity.
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup7
ProvisionofFlexibility
fromEnergy-IntensiveIndustries
T
heelectrificationofindustry,acriticalcomponentofindustrialdecarbonization,providesopportuni-tiesforthesectortooffermuch-neededflexibilitytoelectricitygridswithhighlevelsofvariablerenewableenergy.Thisflexibilitycanbeprovidedvialow-orzero-carbongenerationresources(includinghydrogen,dis-
cussedbelow);grid-scaleenergystorage;or,asdiscussedhere,demandresponse.Importantly,theabsolutequan-tityofcurrentlyavailableflexiblecapacitythatisrequiredonavery-high-renewablesgridappearstobelowin
comparisontothetotalinstalledcapacitiesofsupplyanddemandresources;hence,flexibilitythroughindustrialelectrificationcouldintheoryplayanimportantrole.
Astheelectrificationoftheindustrialsectorproceeds,theincreaseddemandforelectricityislikelytorequiresignificantexpansionincleanelectricitygeneration
technologiessuchaswindandsolarphotovoltaics.The
variabilityoftheseresources,inturn,increasestheneedforflexibleloadsthatcanrespondtothechangingout-putofrenewablegenerationonthegrid.Ifhighlyelectri-fiedindustriesareincentivizedtodoso,somewillbeinapositiontoprovidesignificantflexibilitythroughflexibleloadsandtheprovisionofenergystoragethatsupportsgridreliabilityandflexibility.GiventhehighlycoupledwayinwhichtheEIIsandelectricitysystemwillco-
evolve,understandinghowEIIscancontributetothe
flexibilityandreliabilityofthepowersystemiskey.
IncreasedDemandasaResult
ofIncreasedElectrificationofIndustry
Thelarge-scaleelectrificationofEIIswill,directlyor
indirectly,requiresignificantamountsofelectricityto
industrialElEctrificationandGrEEnHydroGEnProductionEnErgySyStEmSIntEgratIongroup8
operate.InEurope,forexample,EIIsareprojectedtobecomethelargestelectricityconsumerby2050,con-suminganadditional3,000to4,400TWhcompared
to2016levels(a120to180percentincrease)(Eurostat,2021).Manysuchloadswouldbeexpectedtohavea
relativelyconstantdemand,astheunderlyingindustrialprocessesaredesignedtooperateatsteadystate,at
leastintheircurrentform.
InastudybytheElectricPowerResearchInstitute
evaluatingtheimpactofindustrialelectrificationontheelectricitygrid,thescenariowiththehighestlevelsof
electrificationshowedtheelectricityshareofindustry
finalenergydemandincreasingfrom27percentinthe
referencescenarioto45percentin2050(EPRI,2018),demonstratingthatindustrialelectrificationcouldpro-videopportunitiesforcloserintegrationandoptimizationoftheU.S.energysystem.Anotherstudylookingat
Chinafoundthatmaximizingelectrificationusingcom-merciallyavailabletechnologiesinindustriesincludingsteel,foodandbeverages,glass,andpulpandpapercouldincreaseitsindustrialsector’sshareofelectricityconsump-tionin2050fromabout30percentunderbusiness-as-usualassumptionstonearly40percent(Khannaetal.,
2017).
Completelyelectrifyingtheindustrialsectorwould
requireasignificantamountofnewelectricitygenerationcapacity,evenwhenelectrictechnologiesprovideimprovedenergyefficiency.Onestudyexaminedascenarioinwhichelectro-thermaltechnologiesforheatingandelectrolysisformaterialseparationsreplacedallenergyrequirementsofeightEIIsintheEuropeanUnionandestimateda
four-foldincreaseinelectricitydemandby2050(Lech-tenböhmeretal.,2016).Itfoundthatthereplacementofpetroleum-derivedfuelsandfeedstockswithH2,CO2,
andsyngaswouldinvolvenearly10timesmoreelectric-ityby2050.ThecarbonrequiredtoproducereplacementhydrocarbonscouldeitherbecapturedCO2frompowerplants,capturedfromtheCO2/COportionofsyngas
(CO2/CO+H2),orobtainedfromdirectaircapture.
Switchingfromfossiltonon-fossilindustrialfeedstocksalsogreatlyincreasestheelectricityconsumed.Forex-ample,onestudyanalyzedtheswitchingoffeedstocksfortheproductionofcommonindustrialchemicals
fromfossiltonon-fossilfeedstocksusingelectrolytic
technologies,andestimatedth
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中生物实验教学操作规范
- 建筑工程施工质量控制与风险防范
- 地方热力公司工资管理实施细则
- 北京市高考语文诗歌鉴赏专项训练题目
- 小学科学海洋主题课程教案示范
- 古典诗词《汉乐府民歌》教学设计
- 遗传物质基础教学分析与反思报告
- 大型工程神华施工组织设计文档模板
- 幼儿园每日活动效果反思与优化建议
- 物业保洁质量管理标准
- 2025-2026学年苏教版四年级数学上册期末测试卷(附答案)
- 2025新疆交通投资(集团)有限责任公司所属公司招聘26人笔试参考题库附带答案详解(3卷)
- 生化肝功项目解读课件
- 北京林业大学《线性系统理论基础》2025-2026学年第一学期期末试卷
- AQ2059-2016 磷石膏库安全技术规程
- 喷涂车间操作工安全操作规程模版(三篇)
- 节水型小区总结汇报
- 2023中华护理学会团体标准-老年人误吸的预防
- 一年级数学重叠问题练习题
- 事业单位专业技术人员岗位工资标准表
- Android图形图像教学课件
评论
0/150
提交评论