高考数学一轮复习课时规范练32二元一次不等式(组)与简单的线性规划问题理北师大版_第1页
高考数学一轮复习课时规范练32二元一次不等式(组)与简单的线性规划问题理北师大版_第2页
高考数学一轮复习课时规范练32二元一次不等式(组)与简单的线性规划问题理北师大版_第3页
高考数学一轮复习课时规范练32二元一次不等式(组)与简单的线性规划问题理北师大版_第4页
高考数学一轮复习课时规范练32二元一次不等式(组)与简单的线性规划问题理北师大版_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时规范练32二元一次不等式(组)与简单的线性规划问题基础巩固组1.若点(m,1)在不等式2x+3y-5>0所表示的平面区域内,则m的取值范围是()A.m≥1 B.m≤1 C.m<1 D.m>12.(2018安徽六安舒城中学仿真(三),3)若x,y满足x+y-1≥0,x-A.8 B.7 3.(2018广东阳春一中模拟,4)若实数x,y满足不等式组x-2y+1≥0,y≥xA.,2 B.[0,2] C.12,2 D.[0,2]4.(2018吉林长春高三质监(二),6)已知动点M(x,y)满足线性条件x-y+2≥0,x+yA.1 B.2 5.(2018山东临沂沂水一中三模,11)已知实数x,y满足x≥43A.-3, B.-3,C.-3, D.-13,536.(2018宁夏银川四模,6)已知实数x,y满足x+y-A.(0,1) B.(0,1]C.[1,+∞) D.22,+∞7.(2018江西南昌联考,9)已知实数x,y满足:x2-x≤y2-y,0≤y≤1A.(-1,1) B.(-1,0) C.(0,1) D.{-1,1}8.(2018江苏南通联考)已知实数x,y满足2x+y-2≥0,x+2y9.(2018福建三明质检,15)若直线ax+y=0将平面区域Ω=(x,y)x≥0,10.(2018云南红河一模,14)已知x+y-1≥0,x+11.(2018北京海淀区二模,13)A,B两个居民小区的居委会欲组织本小区的中学生利用双休日去市郊的敬老院参加献爱心活动.两个校区每位同学的往返车费及服务老人的人数如下表:A小区B小区往返车费3元5元服务老人的人数5人3人根据安排,去敬老院的往返总车费不能超过37元,且B小区参加献爱心活动的同学比A小区的同学至少多1人,则接受服务的老人最多有人.

综合提升组12.(2018江西南昌二模,6)已知点P(m,n)在不等式组x2+y2≤50A.[-52,52] B.[-52,-5]C.[-52,1] D.[-5,1]13.(2018江西南昌测试八,5)已知f(x)=x2+ax+b,0≤f(1)≤1,9≤f(-3)≤12,则z=(a+1)2+(b+1)2的最小值为()A.22 B. C.14.(2018山西太原一模,7)已知不等式ax-2by≤2在平面区域{(x,y)||x|≤1且|y|≤1}上恒成立,则动点P(a,b)所形成平面区域的面积为()A.4 B.8 15.(2018江西赣州一联,14)已知平面区域Ω:x-y+2≥0,x创新应用组16.(2018河南一模,7)设不等式组x+y≤4,y-x≥0,x-1≥0表示的平面区域为D,若圆C:(x+1)2+yA.(0,5)∪(13,+∞) B.(13,+∞)C.(0,5) D.[5,17.(2018湖北武汉调研,10)若x,y满足|x-1|+2|y+1|≤2,则M=2x2+y2-2x的最小值为()A.-2 B.2C.4 D.-参考答案课时规范练32二元一次不等式(组)与简单的线性规划问题1.D由2m+3-5>0,得m>12.B作出题设约束条件可行域,如图△ABC内部(含边界),作直线l:x+2y=0,把直线l向上平移,z增加,当l过点B(3,2)时,z=3+2×2=7为最大值.故选B.3.B绘制不等式组表示的平面区域如图所示,目标函数表示坐标原点到可行域内点的距离的平方,则目标函数在点(0,0)处取得最小值:zmin=02+02=0,目标函数在点A(1,1)处取得最大值:zmax=12+12=2,故x2+y2的取值范围是[0,2].故选B.4.C画出线性条件x-y+2≥0,x+y≥0,5x+y-8≤0表示的可行域,由x5.A先作出不等式组对应的可行域,如图所示,解方程组x=43,3x+y-6=0得A43,2,yx=y-0x-0表示可行域内的点(x,y)到原点的直线的斜率,所以当点在A点时,斜率最大=243=32,6.Dx2+y此区域为开放区域,所以距离可以无限大,由图像可知最近距离为原点到直线x+y-1=0的距离,所以由点到直线距离公式可得:最短距离d=|0+0-1故选D.7.A构造二次函数f(t)=t2-t,由函数的单调性可知,f(x)≤f(y),得到自变量离轴越远函数值越大,故x-12≤-y直线斜率为-a,由图像可得到-1<-a<1即-1<a<1.故选A.8.4画出2x+y-2≥0,x+2y-4≤0,x-y-1≤0表示的可行域,如图,直线(k-1)x-y+k-2=0过定点(9.或-绘制不等式组表示的平面区域如图所示,由题意可知,该平面区域的面积:S=×OB×AC=×1×2=1,直线ax+y=0的斜率为k=-a,当a<0时,如图所示,联立方程组:ax+y=0,x+y=1可得D11-a,aa-1,此时S△OCD=×1×10.[-6,2]由z=2x-y⇒y=2x-z,则z表示直线y=2x+b在y轴上截距的相反数.如图,易知当直线过点A时直线在y轴上的截距最小为-2,z取最大值为2;当直线过点B时直线在y轴上的截距最大为6,z取最小值为-6.所以,z=2x-y的取值范围是[-6,2].11.35设A,B两小区参加活动同学的人数分别为x,y,受到服务的老人人数为z,则z=5x+3y,且y-x≥1,3x+5y≤37,x≥1,x,y∈Z作出可行域,如图平移直线z=5x+3y,由图可知,当直线z=12.C作出约束条件所表示的平面区域,如图所示,由x2+y2=50,2x-又因为点P(m,n)在不等式组x2所以实数m的取值范围是[-52,1],故选C.13.B因为0≤f(1)≤1,9≤f(-3)≤12,所以1+a+b≥0,1+a+b≤1,9-3a+b≥9,9-3a+b≤12,1+a+b≥0,a14.A令z=ax-2by.∵不等式ax-2by≤2在平面区域{(x,y)||x|≤1且|y|≤1}上恒成立,∴函数z=ax-2by在可行域要求的条件下,zmax=2恒成立,画出平面区域{(x,y)||x|≤1且|y|≤1},如图所示:当直线ax-2by-z=0过点(1,1)或点(1,-1)或(-1,1)或(-1,-1)时,有:a-2b≤2,a+2b∴所求的面积S=2×12×4×1=4,故选A15.355画出可行域如下图所示,由图可知,两平行线最短距离为点A(0,2)到直线2x+y-5=0的距离,即d=|0+216.A作出不等式组x+y≤4,y-x≥0,x-1≥0表示的平面区域,得到如图的△MNP及其内部,其中M(1,1),N(2,2),P(1,3).∵圆C:(x+1)2+y2=r2(r>0)表示以C(-1,0)为圆心,半径为r的圆,∴由图可得,当半径满足r<CM或r>CP时,圆C不经过区域D上的点,∵CM=(1+1)2+12=5,17.D令t=2x,22t-1+2|y+A(2,0),B(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论