




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章口服药物吸收.12024/5/28第一节药物的膜转运与胃肠道吸收
膜转运(membranetransport):
物质通过生物膜(或细胞膜)的现象。膜转运是重要的生命现象之一。
药物的吸收(absorption):
是指药物从给药部位进入体循环的过程。.22024/5/28(一)生物膜的结构
细胞膜主要由膜脂、蛋白质和少量糖类组成。
膜脂主要包括磷脂、糖脂和胆固醇三种类型
1)经典模型
由Danielli与Davson提出细胞膜经典
模型(classicalmodel)
脂质双分子、带电荷的小孔、特殊载体和酶
2)液态镶嵌模型
由Singer和Nicolson提出生物膜液
态镶嵌模型(fluidmosaicmodel)
流动性、不对称性、糖脂和糖蛋白
3)晶格镶嵌模型
由Wallach提出晶格镶嵌模型
脂质运动呈小片的点状分布→解释了稳定性一、生物膜结构与性质.32024/5/28上皮细胞膜液态镶嵌模型示意图.42024/5/28(二)生物膜性质1.膜的流动性构成的脂质分子层是液态的,具有流动性。
2.膜结构的不对称性膜的蛋白质、脂类及糖类物质分布不对称。
3.膜结构的半透性
膜结构具有半透性,某些药物能顺利通过,另一些药物则不能通过。.52024/5/28(三)膜转运途径
1.细胞通道转运(transcellularpathway):
-药物借助其脂溶性或膜内蛋白的载体作用,穿过细胞而被吸收的过程。-存在多种药物转运蛋白,这是脂溶性药物及一些经主动机制吸收药物的通道,是多数药物吸收的主要途径。2.细胞旁路通道转运(paracellularpathway)-是指一些小分子物质经过细胞间连接处的微孔进入体循环的
过程。-小分子水溶性药物可通过该通道转运吸收。
.62024/5/28二、药物转运机制药物跨膜转运机制示意图.72024/5/28定义:被动转运(passivetransport)是指药物的膜转运服从浓度梯度扩散原理,即从高浓度一侧向低浓度一侧扩散的过程。
1.单纯扩散单纯扩散是指药物的跨膜转运受膜两侧浓度差限制过程。单纯扩散属于一级速率过程,服从Fick’s扩散定律:
dC/dt=-DAk(CGI-C)/h
当药物口服后,胃肠道中的浓度大于血中的药物浓度,
P=DAk/h
。
则上式可简化为:
dC/dt=PCGI
(一)被动转运.82024/5/282.膜孔转运(membraneporetransport):药物通过含水小孔转运的过程。
上皮细胞膜上有约0.4~0.8nm大小的微孔,这些贯穿细胞膜且充满水的微孔是水溶性小分子药物的吸收通道。
膜孔内含有带正电荷的蛋白质或吸附有阳离子(如钙离子),其正电荷形成的球形静电空间电场能排斥阳离子,阴离子药物容易通过。
被动转运的特点是:
①药物从高浓度侧向低浓度侧的顺浓度梯度转运。
②不需要载体,膜对药物无特殊选择性。
③不消耗能量,扩散过程与细胞代谢无关,不受细
胞代谢抑制剂的影响。
④不存在转运饱和现象和同类物竟争抑制现象。
.92024/5/28
定义:借助生物膜上载体蛋白的作用,使药物透过生物膜而被吸收的过程称为载体媒介转运(carrier-mediatedtransport)。
1.促进扩散促进扩散(facilitateddiffusion)又称为易化扩散,是指某些物质在细胞膜载体的帮助下,由膜高浓侧向低浓侧扩散的过程(不耗能)。
例:甲氨喋呤进入白细胞2.主动转运借助载体或酶促系统的作用,药物从膜低浓度侧向高浓度侧的转运称为主动转运(activetransport)。(二)载体媒介转运.102024/5/28主动转运的特点有:-逆浓度梯度转运;-需要消耗机体能量,能量来源主要由细胞代谢产生的ATP提供;-需要载体参与,载体物质通常与药物有高度的选择性;-主动转运的速率及转运量与载体的量及其活性有关,当药物浓度较高时,转运可出现饱和现象;-结构类似物能产生竞争性抑制作用,相似物竞争载体结合位点,影响药物的转运和吸收;-受代谢抑制剂的影响;-有结构特异性和部位特异性。.112024/5/28
被动转运与载体媒介转运速率示意图.122024/5/28载体:
离子泵:
Na-K-ATP
Ca2+泵
I2泵
药物外排泵”(drugexfluxpump),P-糖蛋白(P-glycoprotein):
可能量依赖性的将细胞内药物泵出到细胞外。.132024/5/28
(三)膜动转运
定义:(membranemobiletransport)是指通过细胞膜的主动变形将药物摄入细胞内或从细胞内释放到细胞外的转运过程。入胞作用(endocytosis)出胞作用(exocytosis)
胞饮作用(pinocytosis):摄取的药物为溶解
物或液体
吞噬作用(phagocytosis):摄取的物质为大分子
或颗粒状物
.142024/5/28三、胃肠道的结构与功能
胃肠道是口服药物的必经通道,由胃、小肠、大肠三部分组成。.152024/5/28人体胃肠道解剖图.162024/5/28胃肠道生理和药物吸收部位pH长度(cm)表面积转运时间胃1~4-小0.5~3(hr)十二指肠4~620~30较大6(sec)空肠6~7150~250很大1.5~7(hr)回肠6.5~7.5200~350很大盲肠/右结肠5.5~7.590~150较小14~80(hr)左结肠/直肠6.1~7.5.172024/5/28(一)胃胃黏膜表面虽然有许多褶壁,但由于缺乏绒毛,吸收面积有限,酸性药物可吸收。成人每天分泌约2L胃液。胃液含有以胃蛋白酶为主的酶类和0.4%~0.5%的盐酸,具有稀释、消化食物的作用。胃上皮细胞的表面覆盖着一层1.0~1.5mm厚的黏液层,它主要由粘多糖组成,为细胞表面提供了一层保护层。口服的药物在胃内的停留过程中大部分崩解、分散和溶解。
.182024/5/28(二)小肠小肠由十二指肠、空肠和回肠组成,全长约2~3m,直径约4mm。十二指肠与胃相连,胆管和胰腺管开口于此,排出胆汁和胰液,帮助消化和中和部分胃酸使消化液pH升高。小肠黏膜面上分布有许多环状褶壁(kerckring),并拥有大量指状突起的绒毛(villi)。绒毛是小肠黏膜表面的基本组成部分,长度约0.5~1.5mm,绒毛内含丰富的血管、毛细血管以及乳糜淋巴管,是物质吸收的主要部位。小肠黏膜固有层疏松结缔组织中的淋巴小结的集合体--派伊尔氏结(Peyer’spatches,PPs),与微粒吸收密切相关。.192024/5/28小肠绒毛示意图小肠微绒毛示意图(二)小肠.202024/5/28(三)大肠黏膜上有皱纹但没有绒毛停留时间长:20~30h蛋白水解酶相对胃和小肠少的多菌群丰富,厌氧菌400余种:糖苷酶、多糖酶、偶氮还原酶分泌液少,药物释放可获高浓度梯度pH可能比小肠低.212024/5/28一、消化系统因素-1.胃肠液的成分与性质-2.胃排空和胃空速率-3.肠内运行-4.食物的影响-5.胃肠道代谢作用的影响二、循环系统因素三、疾病因素第二节影响药物吸收的生理因素.222024/5/28(一)胃肠液的成分与性质
-pH环境:1~7.6不等,不同的pH环境决定弱酸性弱碱性物质的解离状态-含有酶类:胃蛋白酶、胰酶能分解多肽及蛋白质物质-胆酸盐:表面活性剂,能增加难溶性药物的溶解度,提高其生物利
用度。
-粘性多糖-蛋白复合物:某些药物可与其结合而使药物不能或不完全
吸收。
-不流动水层(stagnantlayer):是高脂溶性药物透膜吸收的屏障
-溶媒牵引效应(solventdrageffect):水分的吸收对药物跨膜转运
有促进作用
一、消化系统因素.232024/5/28(二)胃排空和胃空速率胃排空胃内容物从胃幽门排入十二指肠的过程称为胃排空。胃空速率胃排空的快慢用胃空速率(gastricemptyingrate)来描述。由于小肠表面积大,大多数药物的主要吸收部位在小肠,故胃排空加快,到达小肠部位所需的时间缩短,有利于药物吸收,产生药效时间也加快。胃排空按照一级速率过程进行,服从下式:lgVt=lgV0-Kem·t/2.303胃排空速率与胃内容物体积成正比.242024/5/28影响胃空速率的因素:
①食物理化性质的影响:稀的食物快于稠的、液体快于固体;②胃内容物粘度、渗透压:低粘度、低渗透压胃内容物,一般胃空速率较大;③食物的组成:糖类>蛋白质>脂肪;④药物的影响:服用某些药物如抗胆碱药、抗组胺药、止痛药、麻醉药等使胃空速率都可下降;⑤其他因素:如右侧卧比左侧卧胃排空快,精神因素等也会对胃排空产生影响。.252024/5/28(三)肠内运行小肠的固有运动有节律性分节运动、蠕动运动和黏膜与绒毛的运动三种分节运动以肠环型肌的舒张与收缩运动为主,常在一段小肠内进行较长时间(20min),很少向前推进,使小肠内容物不断分开又不断混合,并反复与吸收黏膜接触蠕动运动使内容物分段向前推进,速度较慢,通常是到达一个新的肠段,再开始分节运动黏膜与绒毛的运动是由局部刺激而发生的黏膜肌层收缩造成的,有利于药物的充分吸收--肠内运行受到:药物、生理、病理因素的影响.262024/5/28
(四)食物的影响延缓或减少药物的吸收-固体制剂崩解、溶出↓,扩散↓,-药物溶解度↓等-胃排空↓促进药物的吸收-胆汁分泌↑:增加了难溶性药物的溶解度而促进其吸收;-胃排空↓:可延长溶出较慢的药物在胃内滞留;有部位特异性吸收的药物可因食物减慢胃空速率而增加吸收;-血流量增加:药物转运加快,吸收增加,药物的生物利用度增大;-抑制p-gp:柚汁可使苯二氮卓类药物、钙结抗剂和抗组胺药特非那汀的吸收总量增加3~6倍以上。
.272024/5/28(五)胃肠道代谢作用的影响消化道黏膜内存在着多种消化酶和肠道菌丛产生的酶肠道代谢可在肠腔进行,也可在肠壁发生,既可在细胞内产生,也可在细胞外进行。主要有水解反应、结合反应等.282024/5/28
二、循环系统因素(一)胃肠血流速度-当药物的透膜速率小于血流速率时,透膜是吸收的限速过程;-当透膜速率大于血流速率时,血流是吸收的限速过程。-血流下降,吸收部位运走药物的能力降低,
不能维持漏槽状态(sinkstate),药物吸收降低。-在胃肠道中,溶出的药物透膜后不断地被血液循环运走,
使胃肠道膜两侧始终维持较高的药物浓度差,这种状态就称为漏槽状态
.292024/5/28(二)肝首过作用在肝药酶作用下,药物可产生生物转化而使药物进入体循环前降解或失活,这种作用称为“肝首过作用”或“肝首过效应(liverfirstpasseffect)”。肝首过效应愈大,药物被代谢越多,其血药浓度也愈小,药效会受到明显的影响。
淋巴液的流速比血流慢得多,约为血流的1/500~1/1000。经淋巴系统吸收的药物不经过肝脏,不受肝首过作用的影响。大分子药物、淋巴靶向药物(三)淋巴循环.302024/5/28三、疾病因素疾病常造成生理功能紊乱从而影响药物吸收:-胃酸缺乏病人,其胃的pH的变化影响药物从剂型中的溶出及吸收;-腹泻时肠内容物快速通过小肠而能降低药物的吸收,或改变肠绒毛生理功能干扰吸收;-器官组织切除-甲状腺功能障碍-肝脏疾病:--门脉高压症伴有小肠黏膜水肿或结肠异常,影响药物从消化道吸收--肝硬化病人由于肝细胞活性下降及合并门静脉旁路,可引起口服生物利用度的增加.312024/5/28一、解离度和脂溶性(一)解离度
构成消化道上皮细胞膜为类脂膜,它是药物吸收的屏障。通常脂溶性较大未解离型分子容易通过,而解离后的离子型不易透过,难以吸收。
pH-分配假说(pH-partitionhypothesis):药物的吸收取决于药物在胃肠道中的解离状态和油/水分配系数的学说。
第三节影响药物吸收的物理化学因素.322024/5/28-Hendreson-Hasselbalch方程式:描述胃肠液中未解离型与解离型药物浓度之比是药物解离常数pKa与消化道pH的函数,
弱酸性药物:pKa–pH=lg(Cu/Ci)
弱碱性药物:pKa–pH=lg(Ci/Cu)
式中Cu,Ci分别为未解离型和解离型药物的浓度。
-通常药物在小肠中的吸收比pH-分配假说所预测的值要高,原因有:①小肠吸收表面微环境比肠内pH低;②小肠吸收表面积大。.332024/5/28(二)脂溶性胃肠上皮细胞为类脂膜,是药物吸收的通道,也是一层屏障。评价药物脂溶性大小的参数是油/水分配系数(Ko/w,P)。
针对单纯扩散的药物.342024/5/28药物脂溶性、分子量与透膜性的关系.352024/5/28药物溶出原理示意图
二、溶出速率定义:溶出速率(dissolutionrate)是指在一定溶出条件下,单位时间药物溶解的量。
.362024/5/28Noyes-Whitney溶出方程:
(一)药物溶出理论在胃肠道中,溶出的药物不断地透膜吸收入血,形成漏槽状态(sinkstate)。与Cs相比,C值是很小的,即Cs>>C,C值可忽略不计。影响溶出速度的因素:1.粒径大小2.溶解度
3.粘度和温度.372024/5/28
(二)影响溶出的药物理化性质1.药物的溶解度
弱酸或弱碱性化合物的溶解度与pH的关系密切,胃肠道不同部位的溶出速率不同。弱酸的总溶解度为:(2-9)[HA]是未解离的酸性药物的固有溶解度(用C0表示),[A-]是阴离子浓度。阴离子浓度可用解离常数Ka与C0的乘积表示,则有:
(2-10)
同理,弱碱性化合物的溶解度为:
(2-11)
将上述两式分别代入NoyesWhitney方程,则得弱酸性药物的溶出速率方程:
同理,弱碱性药物的溶出速率方程:.382024/5/28
2.粒子大小-从NoyesWhitney方程可知,药物的粒子大小与溶出速度有一定关系。相同重量的药物粉末,其表面积随粉末粒子直径的减少而增加。-粒径和表面积的关系为:S=(6/d)×(W/D)
粒子直径(μm)1克粒子的总表面积(cm2)100060100600106000160000临界粒径(criticalparticlesize,CPS):是指不影响药物吸收的最大粒径
(二)影响溶出的药物理化性质.392024/5/283.多晶型-化学结构相同的药物,由于结晶条件不同,可得到数种晶格排列不同的晶型,这种现象称为多晶型(polymorphism)。-稳定型:熵值最小、熔点高、溶解度小、溶出速度慢。-亚稳定型:熵值较小、熔点较低、溶解度较大、溶出速度较快。在常温下比较稳定-不稳定型:溶解度大,易于转化为稳定型。-无定型:不必克服晶格能,溶出最快,但在贮存过程中甚至在体内转化成稳定型
亚稳定型药物通常有较大的溶解度和溶出速度,所以一般选用亚稳定型,但晶型可以转化,应注意以下操作条件:
(1)熔融和加热(2)粉碎与研磨。
(二)影响溶出的药物理化性质.402024/5/284.溶剂化物-药物含有溶媒而构成的结晶称为溶剂化物。-溶剂为水的称为水合物,不含水的为无水物。
-溶出速度大小一般顺序:水合物<无水物<有机溶剂化物
口服氨苄青霉素两种混悬剂的血药浓度
(二)影响溶出的药物理化性质.412024/5/28
三、药物在胃肠道的稳定性1.受胃肠道的pH的影响-硝酸甘油片和硝酸戊四醇酯,口服后,水解失效,疗效很低2.受胃肠道酶(上皮细胞内的酶系、肠内菌丛)降解作用-阿司匹林的脱乙酰化、水杨酰胺与葡萄糖醛酸的结合、左旋多巴的脱羧反应及蛋白、多肽类药物等的酶解破坏。防止药物在胃肠道不稳定的方法:-制成药物的衍生物和前体药物,提高药物的稳定性。
青霉素------氨苄青霉素
红霉素--------红霉素丙酸酯
竹桃霉素---------三乙酰竹桃霉素在胃酸中稳定-制剂包衣技术也是防止药物在胃酸中不稳定的有效措施。.422024/5/28第四节剂型及剂型因素对药物吸收的影响一、固体制剂的崩解与溶出
(一)崩解
崩解(disintegration)系指固体制剂在检查时限内全部崩解或溶散成碎粒的过程。-除不溶性包衣材料或破碎的胶囊壳外,应通过筛网。-固体药物制剂的崩解是药物从固体制剂中释放和吸收的前提,特别是难溶性药物的固体制剂在崩解成碎粒后,有效表面积增加,有利于药物的溶解和释放,制剂崩解的快慢及崩解后颗粒的大小均有可能影响药物疗效。-固体药物制剂的崩解度不能完全反映其内在质量、药物在体内的吸收和呈现药效的情况、药物之间及药物与赋形剂之间的相互作用。.432024/5/28(二)溶出1、溶出度的测定溶出度(dissolution)是指在规定溶出介质中,药物从片剂或胶囊剂等固体制剂溶出的速度和程度。-测定方法溶出度测定有转篮法、桨法、循环法及崩解仪法等。2005年版中国药典二部附录规定溶出度测定法第一法(转篮法)、第二、三法(桨法)。-溶出介质溶出介质有人工胃液,人工肠液,蒸馏水等,有时还需加入适量的表面活性剂,有机溶剂等,满足漏槽条件。.442024/5/28
2.溶出度参数进行固体制剂溶出度研究及计算溶出度参数的目的主要有:
-由体外实验求测出若干参数,用以描述药物或药物制剂在体外溶出或释放的规律;
-以体外若干参数为指标,比较不同原料(粒度、晶型等的不同)、处方、工艺过程、剂型等对制剂质量的影响关系;
-寻找能与体内参数密切相关的体外参数,作为制剂质量的控制标准。
.452024/5/28三种不同片剂(A、B、C)和糖衣片D的累积溶出百分率示意图
.462024/5/28理想的体外溶出数据应与体内药物吸收有相关性。溶出试验的实验设计要尽可能根据体外-体内的相关性来制定中国药典2005版二部附录中规定,普通片剂45分钟内溶出的药物量必须达到70%以上。缓控释制剂通常可按以下规律设计释放度标准:释放度测定至少需三个时间点,第一个取样时间为四分之一给药间隔,释放量为20%~50%;第二个取样时间为二分之一给药间隔,释放量为45%~75%;第三个取样时间在二分之一至一个给药间隔之间,释放量应不少于75%。3.固体制剂溶出标准的制订.472024/5/28二、剂型对药物吸收的影响剂型中药物的吸收和生物利用度情况取决于剂型释放药物的速度与数量。一般认为,口服剂型生物利用度高低的顺序为:
溶液剂>混悬剂>颗粒剂>胶囊剂>片剂>包衣片.482024/5/28
(一)液体制剂1.溶液剂-吸收是口服剂型中最快、且较完全的,生物利用度高。2.乳剂-口服乳剂生物利用度较高。-乳剂在胃肠道提供较大的油相表面积-乳剂中的乳化剂对胃肠道黏膜的作用-油相促进胆汁分泌,有利于难溶性药物吸收-油脂性药物在油相有利于向淋巴系统转运3.混悬剂-溶解过程是否为吸收的限速过程取决于药物的溶解度和溶出速度。.492024/5/28
(二)固体制剂1.散剂-吸收较快,生物利用度较高。2.胶囊剂-服用后在胃中崩解快,囊壳破裂后,药物颗粒可迅速分散,吸收较好。-明胶胶囊壳对药物的溶出有阻碍作用,通常有10~20min的滞后现象,除需要快速起效的药物外,对大多数药物并不重要。3.片剂.502024/5/28三、制剂处方对药物吸收的影响
(一)辅料的影响1.粘合剂过量能延缓片剂的崩解。2.稀释剂对难溶性、小剂量药物具吸附和分散作用:如吸附作用强,药物很难释放出来,生物利用度会显著降低。
亲水性分散剂加到疏水性药物中能够减少粉末与液体接触时的结块现象,使药物有合适的有效比表面积,有利于吸收。3.崩解剂4.润滑剂疏水性润滑剂可使药物与溶媒接触不良,影响片剂的崩解与溶出;亲水性润滑剂能够促进药物与胃肠液的接触,分散集结颗粒,增加药物溶出。5.增粘剂溶出度和扩散速度与粘度呈反比关系。6.表面活性剂增加药物表面的湿润性,增加溶出和吸收。.512024/5/28三、制剂处方对药物吸收的影响
(二)药物间及药物与辅料间的相互作用1.胃酸调节若同时服用酸性药物和碱性药物,则药物吸收就会受到影响。2.络合作用药物在制剂中可能与辅料形成络合物,药物络合物的性质,可能与原来的药物有很大的差别。3.吸附作用若吸附物的解离趋势大,可能不影响药物的吸收,有的可能只是影响药物吸收的快慢,而不影响药物吸收的总量;吸附解离趋势小的吸附剂如活性炭,可使药物的生物利用度减少。4.固体分散作用5.包合作用.522024/5/28四、制剂制备工艺对药物吸收的影响
(一)混合与制粒1.混合2.制粒
(二)压片与包衣1.压片
压力的大小影响片剂的孔隙率,进而影响片剂的崩解与药物的溶出。2.包衣
包衣材料和衣层的厚度影响药物吸收的快慢及血药浓度的高低。.532024/5/28第五节口服药物吸收与制剂设计一、生物药剂学分类系统(一)分类1.分类依据BCS是依据药物的渗透性(permeability)和溶解度(solubility),将药物分成四大类,并可根据这两个特征参数预测药物在体内-体外的相关性。药物的BCS分类与体内外相关性预测类型溶解度渗透性体内外相关性预测Ⅰ高高如果药物胃排空速度比溶出速度快,
存在体内外相关性,反之则无Ⅱ低高如果药物在体内、体外的溶出速度相似,具有
相关性;但给药剂量很高时就难以预测Ⅲ高低透膜是吸收的限速过程,溶出速率没有体内外
相关性Ⅳ低低溶出和透膜都限制药物吸收,不能预测其体内
外相关性.542024/5/282.分类标准的定义-剂量值在BCS中,剂量除以溶解度的比得到的剂量值是WHO推荐的最大剂量(以mg计)。-溶解性高溶解性的药物是指在37℃下,pH在1~7.5的范围内,剂量/溶解度比值(D:Sratio)小于250ml的药物。在pH1~7.5范围,如果单次最大给药剂量的药物可溶于不多于250ml的介质中,则该药物认为是高溶解性的。-渗透性高渗透性药物是指在没有证据说明药物在胃肠道不稳定的情况下,有90%以上的药物被吸收(指相对于给药剂量的药物被吸收部分,而不是指整个人体系统的生物利用度)。.552024/5/283.分类系统与剂型设计-Ⅰ型药物的溶解度和渗透率均较大,药物的吸收通常很好,进一步改善其溶解度对药物的吸收影响不大。
依据FDA《依据生物药剂学分类系统对口服速释型固体给药制剂采用免做人体生物利用度和生物等效性实验》的指导原则,生物学实验免做(biowaiver)目前只限于I型药物,制剂还必须满足以下条件:①为速释型口服固体制剂(30min内释放85%以上);②辅料不能影响主药吸收的速度和程度。但具有窄治疗窗的或应用于口腔的药物不适用于生物学实验免做原则。.562024/5/28-Ⅱ型药物的溶解度较低,药物的溶出是吸收的限速过程,如果药物的体内与体外溶出基本相似,且给药剂量较小时,可通过增加溶解度来改善药物的吸收;若给药剂量很大,存在体液量不足而溶出较慢的问题,仅可通过减小药物粒径的手段来达到促进吸收的目的。-Ⅲ型药物有较低的渗透性,则生物膜是吸收的屏障,药物的跨膜转运是药物吸收的限速过程,可能存在主动转运和特殊转运过程。可通过改善药物的脂溶性来增加药物的吸收。-Ⅳ型药物的溶解度和渗透性均较低,药物溶解度或油/水分配系数的变化可改变药物的吸收特性,主动转运和P-gp药泵机制可能也是影响因素之一。对于Ⅳ型药物通常考虑采用静脉途径给药。.572024/5/28(二)分类系统与有关参数的关系生物药剂学分类系统可用三个参数来描述药物吸收特征。-吸收数(absorptionnumber,An)-剂量数(dosenumber,Do)-溶出数(dissolutionnumber,Dn)
对这三个数进行综合分析,可判断药物被吸收的可能性,也可计算出药物的吸收分数F值,这对药物在生物药剂学分类系统中的类别划分有重要指导意义。.582024/5/28
二、促进药物吸收的方法(一)提高药物溶出速度1.增加药物的溶解度-(1)制成盐类-(2)制成无定型药物-(3)加入表面活性剂-(4)用亲水性包合材料制成包合物2.增加药物的表面积
通常采用微粉化技术、固体分散技术等来增加药物的表面积。.592024/5/28
二、促进药物吸收的方法(二)加入口服吸收促进剂-透过促进剂(permeationenhancer)或吸收促进剂(absorptionenhancer)
能特异或非特异性地增强大分子或极性药物胃肠道透过性的物质-影响口服药物透膜的主要生理因素有:
黏膜黏液层:延缓药物的扩散
不流动水层:限制药物在绒毛间的扩散
细胞间的紧密连接处:阻碍水溶性药物的通过
生物膜:限制低脂溶性药物的透过
在制剂中加入吸收促进剂可改善上述特征,使药物的吸收速度和吸收量增加。
.602024/5/28
改善跨细胞膜途径吸收机制有:-改变黏液的流变学性质:降低黏液的粘度和弹性,如脱氧胆酸钠、甘胆酸钠-提高膜的流动性:脂肪酸、短碳链脂肪酸钠-膜成分的溶解作用:胆酸盐-与膜蛋白的相互作用:使蛋白质变性、析出或蛋白质螺环延伸、展开,细胞间的
空隙增大,开放极性通道。促进细胞旁路转运机制有:-溶解拖动能力的增加:葡萄糖和氨基酸增强胰岛素扩散-肌动蛋白和肌球蛋白环的收缩:葡萄糖、氨基酸-此外,细胞外Ca2+的螯合作用、上皮细胞ATP的消耗、对磷脂酶C介导的紧密连接
物的调节及NO对紧密连接处的膨胀作用等都与细胞旁路吸收有关。.612024/5/28药物口服吸收促进剂一览表胆盐胆酸钠、脱氧胆酸钠、硫磺胆酸钠、甘胆酸钠表面活性剂聚氧乙烯烷醚、聚氧乙烯烷酯、聚山梨酯、
月桂醇硫酸钠、二辛基磺基琥珀酸钠、脂肪酸癸酸钠、油酸环糊精羟丙基β-环糊精、甲基β-环糊精甘油酯植物油、中链甘油酯、磷脂、聚氧乙烯甘油酯水杨酸盐水杨酸钠、甲氧水杨酸钠螯合剂EDTA、皂角苷可溶胀性聚合物淀粉、壳聚糖、polycarbophil其他柠檬酸、CO2泡腾剂、NO供体类别物质.622024/5/28三、控制药物释放剂型设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园员工聘用合同
- 流通经销合同8篇
- 《无机化学》课程标准
- 出口赔偿合同范本
- 个人英语学习计划
- 三年级语文下册工作总结
- 南车 合同范本
- 双方合作生产经营合同范例
- 厨房工作人员劳务合同范本
- 会计记账报税合同范本
- 经营性公墓建设标准
- 10KV系统短路电流整定计算表格
- 初中英语 沪教牛津版 8B U1-4 More Practice Success for Spring Buds 课件
- 压水堆核电厂在役检查课件
- 前房角镜检查法及其在眼科的应用教学课件
- 2017年度项目生产部工作计划推进表甘特图
- 地下室车库综合管线施工布置
- 采购订单模板
- 巴马格纺丝控制系统软件说明书(共46页)
- 完整解读2021年《建设工程抗震管理条例》PPT教学讲座课件
- 肺结核患者管理ppt课件
评论
0/150
提交评论