安徽省池州市 2024年数学高一下期末质量跟踪监视模拟试题含解析_第1页
安徽省池州市 2024年数学高一下期末质量跟踪监视模拟试题含解析_第2页
安徽省池州市 2024年数学高一下期末质量跟踪监视模拟试题含解析_第3页
安徽省池州市 2024年数学高一下期末质量跟踪监视模拟试题含解析_第4页
安徽省池州市 2024年数学高一下期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省池州市2024年数学高一下期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,则二面角V-AB-CA.30° B.45° C.60° D.90°2.若函数和在区间D上都是增函数,则区间D可以是()A. B. C. D.3.角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.某校有高一学生人,高二学生人,高三学生人,现教育局督导组欲用分层抽样的方法抽取名学生进行问卷调查,则下列判断正确的是()A.高一学生被抽到的可能性最大 B.高二学生被抽到的可能性最大C.高三学生被抽到的可能性最大 D.每位学生被抽到的可能性相等5.不等式的解集为,则不等式的解集为()A.或 B. C. D.或6.向正方形ABCD内任投一点P,则“的面积大于正方形ABCD面积的”的概率是()A. B. C. D.7.已知与均为单位向量,它们的夹角为,那么等于()A. B. C. D.48.已知向量a=(2,1),a⋅b=10,A.5 B.10 C.5 D.259.在中,内角,,的对边分别为,,,且=.则A. B. C. D.10.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S的截面三角形面积的最大值为2,则该圆锥的侧面积为A. B. C. D.4二、填空题:本大题共6小题,每小题5分,共30分。11.已知3a=2,则32a=____,log318﹣a=_____12.已知是奇函数,且,则_______.13.若是方程的解,其中,则________.14.与终边相同的最小正角是______.15.在锐角中,则的值等于.16.在平面直角坐标系xOy中,已知直角中,直角顶点A在直线上,顶点B,C在圆上,则点A横坐标的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.的内角,,的对边分别为,,,设.(1)求;(2)若,求.18.设等差数列的前项和为,且.(I)求数列的通项公式;(II)设为数列的前项和,求.19.已知函数.(1)求的值;(2)设,求的值.20.在平面直角坐标系中,曲线与坐标轴的交点都在圆上.(1)求圆的方程;(2)若圆与直线交于,两点,且,求的值.21.在中,内角所对的边分别是.已知,,且.(Ⅰ)求角的大小;(Ⅱ)若,求面积的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

取AB中点O,连结VO,CO,由等腰三角形的性质可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度数.【详解】取AB中点O,连结VO,CO,∴三棱锥V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度数为60∘【点睛】本题主要考查三棱锥的性质、二面角的求法,属于中档题.求二面角的大小既能考查线线垂直关系,又能考查线面垂直关系,同时可以考查学生的计算能力,是高考命题的热点,求二面角的方法通常有两个思路:一是利用空间向量,建立坐标系,这种方法优点是思路清晰、方法明确,但是计算量较大;二是传统方法,求出二面角平面角的大小,这种解法的关键是找到平面角.2、D【解析】

依次判断每个选项,排除错误选项得到答案.【详解】时,单调递减,A错误时,单调递减,B错误时,单调递减,C错误时,函数和都是增函数,D正确故答案选D【点睛】本题考查了三角函数的单调性,意在考查学生对于三角函数性质的理解应用,也可以通过图像得到答案.3、C【解析】

由,即可判断.【详解】,则与的终边相同,则角的终边落在第三象限故选:C【点睛】本题主要考查了判断角的终边所在象限,属于基础题.4、D【解析】

根据分层抽样是等可能的选出正确答案.【详解】由于分层抽样是等可能的,所以每位学生被抽到的可能性相等,故选D.【点睛】本小题主要考查随机抽样的公平性,考查分层抽样的知识,属于基础题.5、A【解析】不等式的解集为,的两根为,,且,即,解得则不等式可化为解得故选6、C【解析】

由题意,求出满足题意的点所在区域的面积,利用面积比求概率.【详解】由题意,设正方形的边长为1,则正方形的面积为1,要使的面积大于正方形面积的,需要到的距离大于,即点所在区域面积为,由几何概型得,的面积大于正方形面积的的概率为.故选:C.【点睛】本题考查几何概型的概率求法,解题的关键是明确概率模型,属于基础题.7、A【解析】本题主要考查的是向量的求模公式.由条件可知==,所以应选A.8、C【解析】

将|a+b9、C【解析】试题分析:由正弦定理得,,由于,,,故答案为C.考点:正弦定理的应用.10、B【解析】

过该圆锥顶点S的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积.【详解】过该圆锥顶点S的截面三角形面积最直角三角形,设圆锥的母线长和底面圆的半径分别为,则,即,又,所以圆锥的侧面积;故选B.【点睛】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式,当,即截面是等腰直角三角时面积最大.二、填空题:本大题共6小题,每小题5分,共30分。11、42.【解析】

由已知结合指数式的运算性质求解,把化为对数式得到,代入,再由对数的运算性质求解.【详解】∵,∴,由,得,∴.故答案为:,.【点睛】本题考查指数式与对数式的互化,考查对数的运算性质,属于基础题.12、【解析】

根据奇偶性定义可知,利用可求得,从而得到;利用可求得结果.【详解】为奇函数又即,解得:本题正确结果:【点睛】本题考查根据函数的奇偶性求解函数值的问题,属于基础题.13、或【解析】

将代入方程,化简结合余弦函数的性质即可求解.【详解】由题意可得:,即所以或又所以或故答案为:或【点睛】本题主要考查了三角函数求值问题,属于基础题.14、【解析】

根据终边相同的角的定义以及最小正角的要求,可确定结果.【详解】因为,所以与终边相同的最小正角是.故答案为:.【点睛】本题主要考查终边相同的角,属于基础题.15、2【解析】设由正弦定理得16、【解析】

由题意画出图形,写出以原点为圆心,以为半径的圆的方程,与直线方程联立求得值,则答案可求.【详解】如图所示,当点往直线两边运动时,不断变小,当点为直线上的定点时,直线与圆相切时,最大,∴当为正方形,则,则以为圆心,以为半径的圆的方程为.联立,得.解得或.点横坐标的取值范围是.故答案为:.【点睛】本题考查直线与圆位置关系的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由正弦定理得,再利用余弦定理的到.(2)将代入等式,化简得到答案.【详解】解:(1)由结合正弦定理得;∴又,∴.(2)由,∴∴,∴∴又∴解得:,.【点睛】本题考查了正弦定理,余弦定理,和差公式,意在考查学生的计算能力.18、(I);(II).【解析】

(I)根据已知的两个条件求出公差d,即得数列的通项公式;(II)先求出,再利用裂项相消法求和得解.【详解】(I)由题得,所以等差数列的通项为;(II)因为,所以.【点睛】本题主要考查等差数列的通项的求法,考查等差数列前n项和基本量的计算,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1);(2).【解析】试题分析:(1)直接带入求值;(2)将和直接带入函数,会得到和的值,然后根据的值.试题解析:解:(1)(2)考点:三角函数求值20、(1);(2).【解析】分析:(1)因为曲线与坐标轴的交点都在圆上,所以要求圆的方程应求曲线与坐标轴的三个交点.曲线与轴的交点为,与轴的交点为.由与轴的交点为关于点(3,0)对称,故可设圆的圆心为,由两点间距离公式可得,解得.进而可求得圆的半径为,然后可求圆的方程为.(2)设,,由可得,进而可得,减少变量个数.因为,,所以.要求值,故将直线与圆的方程联立可得,消去,得方程.因为直线与圆有两个交点,故判别式,由根与系数的关系可得,.代入,化简可求得,满足,故.详解:(1)曲线与轴的交点为,与轴的交点为.故可设的圆心为,则有,解得.则圆的半径为,所以圆的方程为.(2)设,,其坐标满足方程组消去,得方程.由已知可得,判别式,且,.由于,可得.又,所以.由得,满足,故.点睛:⑴求圆的方程一般有两种方法:①待定系数法:如条件和圆心或半径有关,可设圆的方程为标准方程,再代入条件可求方程;如已知圆过两点或三点,可设圆的方程为一般方程,再根据条件求方程;②几何方法:利用圆的性质,如圆的弦的垂直平分线经过圆心,最长的弦为直径,圆心到切线的距离等于半径.(2)直线与圆或圆锥曲线交于,两点,若,应设,,可得.可将直线与圆或圆锥曲线的方程联立消去,得关于的一元二次方程,利用根与系数的关系得两根和与两根积,代入,化简求值.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论