江苏省连云港市赣榆县重点中学2022年中考数学考前最后一卷含解析_第1页
江苏省连云港市赣榆县重点中学2022年中考数学考前最后一卷含解析_第2页
江苏省连云港市赣榆县重点中学2022年中考数学考前最后一卷含解析_第3页
江苏省连云港市赣榆县重点中学2022年中考数学考前最后一卷含解析_第4页
江苏省连云港市赣榆县重点中学2022年中考数学考前最后一卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省连云港市赣榆县重点中学2022年中考数学考前最后一卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.初三(1)班的座位表如图所示,如果如图所示建立平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)2.不等式组1-x≤0,3x-6<0A. B. C. D.3.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A. B.C. D.4.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为()A. B. C. D.5.一、单选题如图:在中,平分,平分,且交于,若,则等于()A.75 B.100 C.120 D.1256.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是()A.﹣2 B. C.2 D.47.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是()A.①②③ B.②③④ C.①③④ D.①②④8.下列计算中,正确的是()A.a•3a=4a2 B.2a+3a=5a2C.(ab)3=a3b3 D.7a3÷14a2=2a9.下列计算正确的是A. B. C. D.10.的相反数是()A. B.﹣ C.﹣ D.二、填空题(共7小题,每小题3分,满分21分)11.化简:÷=_____.12.如图,Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=14,则BC的长为_____.13.平面直角坐标系中一点P(m﹣3,1﹣2m)在第三象限,则m的取值范围是_____.14.如果某数的一个平方根是﹣5,那么这个数是_____.15.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______.16.若分式方程有增根,则m的值为______.17.瑞士的一位中学教师巴尔末从光谱数据,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数_____.三、解答题(共7小题,满分69分)18.(10分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C.(1)求该抛物线的解析式;(2)根据图象直接写出不等式ax2+(b﹣1)x+c>2的解集;(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点.当PQ=时,求P点坐标.19.(5分)求不等式组的整数解.20.(8分)阅读下列材料:题目:如图,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,请用sinA、cosA表示sin2A.21.(10分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.⑴用含t的代数式表示:AP=,AQ=.⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?22.(10分)如图,在Rt△ABC中,∠C=90°,O为BC边上一点,以OC为半径的圆O,交AB于D点,且AD=AC,延长DO交圆O于E点,连接AE.求证:DE⊥AB;若DB=4,BC=8,求AE的长.23.(12分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.(14分)某初级中学对毕业班学生三年来参加市级以上各项活动获奖情况进行统计,七年级时有48人次获奖,之后逐年增加,到九年级毕业时累计共有183人次获奖,求这两年中获奖人次的平均年增长率.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】

根据题意知小李所对应的坐标是(7,4).故选C.2、D【解析】试题分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.3、C【解析】

根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.【详解】解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;B、由一次函数图象可知,k>0,∴﹣k<0,-=>0,∴二次函数的图象开口向下,且对称轴在x轴的正半轴,故B选项不合题意;C、由一次函数图象可知,k<0,∴﹣k>0,-=<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故C选项符合题意;D、由一次函数图象可知,k<0,∴﹣k>0,-=<0,,∴二次函数的图象开口向上,且对称轴在x轴的负半轴,一次函数必经过点(2,0),当x=2时,二次函数值y=﹣4k>0,故D选项不合题意;故选:C.【点睛】本题考查一次函数与二次函数的图象和性质,解决此题的关键是熟记图象的性质,此外,还要主要二次函数的对称轴、两图象的交点的位置等.4、D【解析】

连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵的长为,∴解得:R=4,∴AB=ADcos30°=,∴BC=AB=,∴AC=BC=6,∴S△ABC=×BC×AC=××6=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=故选:D.【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.5、B【解析】

根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,

又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,

∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,

∴CM=EM=MF=5,EF=10,

由勾股定理可知CE2+CF2=EF2=1.

故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.6、C【解析】分析:将x=-2代入方程即可求出a的值.详解:将x=-2代入可得:4a-2a-4=0,解得:a=2,故选C.点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.7、C【解析】解:∵A、B是反比函数上的点,∴S△OBD=S△OAC=,故①正确;当P的横纵坐标相等时PA=PB,故②错误;∵P是的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;连接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;综上所述,正确的结论有①③④.故选C.点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.8、C【解析】

根据同底数幂的运算法则进行判断即可.【详解】解:A、a•3a=3a2,故原选项计算错误;B、2a+3a=5a,故原选项计算错误;C、(ab)3=a3b3,故原选项计算正确;D、7a3÷14a2=a,故原选项计算错误;故选C.【点睛】本题考点:同底数幂的混合运算.9、C【解析】

根据同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方逐一判断即可.【详解】、与不是同类项,不能合并,此选项错误;、,此选项错误;、,此选项正确;、,此选项错误.故选:.【点睛】此题考查的是整式的运算,掌握同类项的定义、同底数幂的除法、单项式乘单项式法则和积的乘方是解决此题的关键.10、B【解析】

一个数的相反数就是在这个数前面添上“﹣”号,由此即可求解.【详解】解:的相反数是﹣.故选:B.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,1的相反数是1.二、填空题(共7小题,每小题3分,满分21分)11、m【解析】解:原式=•=m.故答案为m.12、1【解析】解:∵DE是AB的垂直平分线,∴AD=BD=14,∴∠A=∠ABD=15°,∴∠BDC=∠A+∠ABD=15°+15°=30°.在Rt△BCD中,BC=BD=×14=1.故答案为1.点睛:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,30°角所对的直角边等于斜边的一半的性质,熟记性质是解答本题的关键.13、0.5<m<3【解析】

根据第三象限内点的横坐标与纵坐标都是负数列式不等式组,然后求解即可.【详解】∵点P(m−3,1−2m)在第三象限,∴,解得:0.5<m<3.故答案为:0.5<m<3.【点睛】本题考查了解一元二次方程组与象限及点的坐标的有关性质,解题的关键是熟练的掌握解一元二次方程组与象限及点的坐标的有关性质.14、25【解析】

利用平方根定义即可求出这个数.【详解】设这个数是x(x≥0),所以x=(-5)2=25.【点睛】本题解题的关键是掌握平方根的定义.15、5或1.【解析】

先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【详解】∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=5.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如图5所示:当∠B′ED=90°时,C与点E重合.∵AB′=5,AC=6,∴B′E=5.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.综上所述,BD的长为5或1.16、-1【解析】

增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出m的值.【详解】方程两边都乘(x-1),得x-1(x-1)=-m∵原方程增根为x=1,∴把x=1代入整式方程,得m=-1,故答案为:-1.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.17、.【解析】

分子的规律依次是:32,42,52,62,72,82,92…,分母的规律是:规律是:5+7=1212+9=2121+11=3232+13=45…,即分子为(n+2)2,分母为n(n+4).【详解】解:由题可知规律,第9个数的分子是(9+2)2=121;第五个的分母是:32+13=45;第六个的分母是:45+15=60;第七个的分母是:60+17=77;第八个的分母是:77+19=96;则第九个的分母是:96+21=1.因而第九个数是:.故答案为:.【点睛】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.三、解答题(共7小题,满分69分)18、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P点坐标为(﹣1,2).【解析】分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PE⊥x轴于点E,交AB于点D,根据题意得出∠PDQ=∠ADE=45°,PD==1,然后设点P(x,﹣x2﹣x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标.详解:(1)当y=0时,x+2=0,解得x=﹣2,当x=0时,y=0+2=2,则点A(﹣2,0),B(0,2),把A(﹣2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得.∴该抛物线的解析式为y=﹣x2﹣x+2;(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,则不等式ax2+(b﹣1)x+c>2的解集为﹣2<x<0;(3)如图,作PE⊥x轴于点E,交AB于点D,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,设点P(x,﹣x2﹣x+2),则点D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,即﹣x2﹣2x=1,解得x=﹣1,则﹣x2﹣x+2=2,∴P点坐标为(﹣1,2).点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型.利用待定系数法求出函数解析式是解决这个问题的关键.19、-1,-1,0,1,1【解析】分析:先求出不等式组的解集,然后求出整数解.详解:,由不等式①,得:x≥﹣1,由不等式②,得:x<3,故原不等式组的解集是﹣1≤x<3,∴不等式组的整数解是:﹣1、﹣1、0、1、1.点睛:本题考查了解一元一次不等式的整数解,解答本题的关键是明确解一元一次不等式组的方法.20、sin2A=2cosAsinA【解析】

先作出直角三角形的斜边的中线,进而求出,∠CED=2∠A,最后用三角函数的定义即可得出结论【详解】解:如图,作Rt△ABC的斜边AB上的中线CE,则∴∠CED=2∠A,过点C作CD⊥AB于D,在Rt△ACD中,CD=ACsinA,在Rt△ABC中,AC=ABcosA=cosA在Rt△CED中,sin2A=sin∠CED==2ACsinA=2cosAsinA【点睛】此题主要解直角三角形,锐角三角函数的定义,直角三角形的斜边的中线等于斜边的一半,构造出直角三角形和∠CED=2∠A是解本题的关键.21、(1)AP=2t,AQ=16﹣3t;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论