




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版七年级下册数学同步练习一、选择题(本大题共8小题)1.下列说法正确的有()①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.2.如图,同位角是()A.∠1和∠2 B.∠3和∠4 C.∠2和∠4 D.∠1和∠3.如图,图中∠α的度数等于()A.135° B. 125° C. 115° D. 105°如图所示,直线AB和CD相交于点O,OE、OF是过点O的射线,其中构成对顶角的是()A.∠AOF和∠DOEB.∠EOF和∠BOEC.∠COF和∠BODD.∠BOC和∠AOD5.如图3所示,直线L1,L2,L3相交于一点,则下列答案中,全对的一组是()A.∠1=90°,∠2=30°,∠3=∠4=60°;B.∠1=∠3=90°,∠2=∠4=30C.∠1=∠3=90°,∠2=∠4=60°;D.∠1=∠3=90°,∠2=60°,∠4=30°6.如图7,AB,CD相交于点O,AC⊥CD与点C,若∠BOD=38°,则∠A等于______°。52B.46C.48D.50如图,若AB∥CD,CD∥EF,那么AB和EF的位置关系是()A.平行 B.相交C.垂直8.下列说法中正确的是()A.有且只有一条直线垂直于已知直线C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。D.直线c外一点A与直线c上各点连接而成的所有线段中,最短的线段长是3cm,则点A到直线c的距离是3cm.二、填空题(本大题共6小题)9.用剪刀剪东西时,剪刀张开的角度如图所示,若∠1=25°,则∠2=.10.如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=°.11.如图所示,直线AB,CD相交于点O,已知∠AOC=70°,OE把∠BOD分成两部分,且∠BOE:∠EOD=2:3,则∠EOD=________.12.如图所示,已知AB和CD相交于O,OA平分∠EOC,∠EOC=70°,则∠BOD=.13.如图所示,已知AB、CD相交与O,OE平分∠AOD,OF⊥CD于O,∠1=40°,则∠2=;∠3=.14.如图,在4×6的正方形网格中,点A,B,C,D,E,F都在格点上,连接C,D,E,F中任意两点得到的所有线段中,与线段AB平行的线段是.三、计算题(本大题共4小题)15.如图所示,直线AB、CD、EF相交于点O,CD⊥AB,∠AOE:∠AOD=3:5,求∠BOF与∠DOF的度数.16.如图所示,已知:BC是从直线AB上出发的一条射线,BE平分∠ABC,∠EBF=90°.求证:BF平分∠CBD.17.如图所示,直线a,b,c两两相交,∠1=2∠3,∠2=65°,求∠4的度数.18.在同一平面内,小亮画了5条直线,发现图中只有4个交点,你能画出来吗?请尝试画出2种具有其他位置关系的5条直线,并说出交点个数.参考答案:一、选择题(本大题共8小题)1.B分析:逐项对各个说法进行分析验证解答可得。解:①符合对顶角的性质,故正确;②如等腰三角形的两底角相等但不是对顶角,故不正确;③如等腰三角形的两底角相等但不是对顶角,故不正确;④因为对顶角相等,所以不相等的角不是对顶角,故正确;故选B.2.D分析:根据同位角定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角进行分析即可.解:图中∠1和∠4是同位角,故选:D.分析: 根据对顶角和邻补角互补解答即可.解:因为∠AOD+∠BOC=236°,根据对顶角定义可得∠BOC=118°,则∠AOC=180°﹣118°=62°.故选B.4.D分析“:根据对顶角的定义进行判断.解:根据对顶角的定义:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.符合条件的只有∠BOC和∠AOD,
故选D.5.D分析:根据内错角的定义找出即可.解:根据对顶角相等,可知∠2=60°∠4=30°.由平角的定义知,∠3=180°-∠2-∠4=90°,所以∠1=∠3=90°.故选D.6.A分析:主要考查“对顶角相等”和“直角三角形中两锐角互余”,这两条性质,解:又对顶角性质和直角三角形两锐角互余,可以求出∠A的度数为52。故选A。7.A分析:主要考查了平行线的传递性。解:因为平行于同一条直线的两直线平行,所以AB∥EF.选A.8.D分析:根据垂直的定义,点到直线的距离的概念依次判断各项即可。解:A.一条直线的垂线有无数条,故本选项错误;B.互相垂直的两条线段所在的直线一定相交,但这两条线段不一定相交,故本选项错误;C.从直线外一点到这条直线的垂线段长度,叫做这点到这条直线的距离,故本选项错误;D.直线c外一点A与直线c上各点连接而成的所有线段中,最短的线段长是3cm,则点A到直线c的距离是3cm.故选D.二、填空题(本大题共6小题)9.分析:根据对顶角定义,可得答案.解:由对顶角定义,得∠2=∠1=25°,故答案为:25°.10.分析:根据对顶角相等可得∠COB=132°,再根据垂直定义可得∠EOB=90°,再利用角的和差关系可得答案.解:∵∠AOD=132°,∴∠COB=132°,∵EO⊥AB,∴∠EOB=90°,∴∠COE=132°﹣90°=42°,故答案为:42.11.分析:结合比的关系对角进行分析计算即可得到。解:∵∠AOC与∠BOD为对角,∴∠BOD=∠AOC=70°∵∠BOE:∠EOD=2:3,∴∠EOD=3/5∠BOD=42°12.解:答案为0,1,2,313.分析:本题考查的是角平分线的性质,垂直的定义,平角的定义.根据OF⊥CD可得∠FOD=90°,由∠1=40°可得∠2=50°,再根据平角的定义可得∠AOD=130°,最后由OE平分∠AOD,即可求得∠3的度数。解:∵OF⊥CD,∴∠FOD=90°,∵∠1=40°,∴∠2=90°-∠1=50°,∴∠AOD=180°-∠2=130°,∵OE平分∠AOD,∴∠3=∠AOD=65°.14.分析:分别画出C,D,E,F中每两点所在直线。解:如图所示:只有FD所在直线与AB所在直线不相交,故与AB平行的线段是FD.答案:FD三、计算题(本大题共4小题)15.解:∵∠AOE:∠AOD=3:5,∠AOD=90°,∴∠AOB=90°×=54°;∵∠BOF=∠AOF=54°,∴∠DOF=90°-54°=36°.16.分析:本题考查的是邻补角的定义,角平分线的性质解:证明∵BE平分∠ABC,∴∠CBE=∠ABC,∵∠EBF=90°,∴∠CBF=90°-∠ABC;∠DBF=180°-∠ABC-∠CBF=180°-∠ABC-(90°-∠ABC)=90°-∠ABC=∠CBF.故BF平分∠CBD.17.分析:结合图形解答即可。解:∵∠2=65°
∴∠1=∠2=65°(对顶角相等)又∠1=2∠3∴∠3=∠°∴∠4=∠°(对顶角相等)。18.解:如图所示,直线a∥b∥c∥d,直线e与a,b,c,d相交,其他情况:(不唯一,现列举8种情况)(1)a∥b∥c∥d∥e,0个交点.(2)a∥b∥c,d,e与a,b,c相交且d,e相交,7个交点或5个交点.(3)a∥b∥c,d,e与a,b,c相交且d∥e,6个交点.(4)a∥b,d,e,c都与a,b相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陇东学院《外国文学名著选读(二)》2023-2024学年第一学期期末试卷
- 陕西中医药大学《外国戏剧史》2023-2024学年第一学期期末试卷
- 陕西学前师范学院《小学数学教学与研究(二)》2023-2024学年第二学期期末试卷
- 陕西旅游烹饪职业学院《基于C#的WinForm应用程序开发课程设计》2023-2024学年第二学期期末试卷
- 陕西理工大学《传热学》2023-2024学年第一学期期末试卷
- 陕西省兴平市秦岭中学2025年第二次高中毕业生复习统一检测试题化学试题含解析
- 陕西省安康市汉滨高中2024-2025学年高三模拟考试(二)历史试题试卷含解析
- 陕西省尚德中学2025届高三下学期月考5(期末)语文试题含解析
- 陕西省延安市重点名校2024-2025学年初三化学试题第二次学情调查试卷含解析
- 陕西省汉中南郑区2025届六年级下学期5月模拟预测数学试题含解析
- 2022年新高考全国Ⅰ卷英语试题及参考答案
- 高血压护理查房ppt
- 锦屏二级水电站厂区枢纽工程测量方案
- 山西安全资料地标表格
- 心理学专业英语总结(完整)
- 新人教版七年级初一数学下册第一二单元测试卷
- 白内障手术操作规范及质量控制标准(2017版)
- 《电子商务法律法规》课程标准
- 淡化海砂项目规划实施方案(76页)
- 声屏障施工方案、方法与技术措施
- 蜡疗技术PPT课件
评论
0/150
提交评论