2023-2024学年四川省成都市双流区双流棠湖中学高一下数学期末复习检测试题含解析_第1页
2023-2024学年四川省成都市双流区双流棠湖中学高一下数学期末复习检测试题含解析_第2页
2023-2024学年四川省成都市双流区双流棠湖中学高一下数学期末复习检测试题含解析_第3页
2023-2024学年四川省成都市双流区双流棠湖中学高一下数学期末复习检测试题含解析_第4页
2023-2024学年四川省成都市双流区双流棠湖中学高一下数学期末复习检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年四川省成都市双流区双流棠湖中学高一下数学期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的最小正周期为,将该函数的图象向左平移个单位后,得到的图象对应的函数为偶函数,则的图象()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称2.已知直线与圆交于A、B两点,O是坐标原点,向量、满足,则实数a的值是()A.2 B. C.或 D.2或3.两数与的等比中项是()A.1 B.-1 C.±1 D.4.已知奇函数满足,则的取值不可能是()A.2 B.4 C.6 D.105.已知l,m是两条不同的直线,m⊥平面α,则“”是“l⊥m”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.下列向量组中,能作为表示它们所在平面内的所有向量的基底的是()A., B.,C., D.,7.过点斜率为-3的直线的一般式方程为()A. B.C. D.8.已知角的终边经过点,则()A. B. C.-2 D.9.方程的解所在区间是()A. B.C. D.10.过点作抛物线的两条切线,切点为,则的面积为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,,,则_____.12.已知,,则______,______.13.在直角坐标系中,直线与直线都经过点,若,则直线的一般方程是_____.14.函数,的图象与直线y=k有且仅有两个不同的交点,则k的取值范围是_____.15.将十进制数30化为二进制数为________.16.已知,,则的值为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在平面直角坐标系中,已知圆的方程为,过点的直线与圆交于两点,.(1)若,求直线的方程;(2)若直线与轴交于点,设,,,R,求的值.18.已知.(1)求实数的值;(2)若,求实数的值.19.已知直线恒过定点,圆经过点和定点,且圆心在直线上.(1)求圆的方程;(2)已知点为圆直径的一个端点,若另一端点为点,问轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.20.在中,内角对边分别为,,,已知.(1)求的值;(2)若,,求的面积.21.已知点,,曲线任意一点满足.(1)求曲线的方程;(2)设点,问是否存在过定点的直线与曲线相交于不同两点,无论直线如何运动,轴都平分,若存在,求出点坐标,若不存在,请说明理由.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由周期求出,按图象平移写出函数解析式,再由偶函数性质求出,然后根据正弦函数的性质判断.【详解】由题意,平移得函数式为,其为偶函数,∴,由于,∴.,,.∴是对称中心.故选:A.【点睛】本题考查求三角函数的解析式,考查三角函数的对称性的奇偶性.掌握三角函数图象变换是基础,掌握三角函数的性质是解题关键.2、D【解析】

由,两边平方,得,所以,则为等腰直角三角形,而圆的半径,则原点到直线的距离为,所以,解得的值为2或-2.故选D.3、C【解析】试题分析:设两数的等比中项为,等比中项为-1或1考点:等比中项4、B【解析】

由三角函数的奇偶性和对称性可求得参数的值.【详解】由是奇函数得又因为得关于对称,所以,解得所以当时,得A答案;当时,得C答案;当时,得D答案;故选B.【点睛】本题考查三角函数的奇偶性和对称性,属于基础题.5、A【解析】

根据充分条件和必要条件的定义,结合线面垂直的性质进行判断即可.【详解】当m⊥平面α时,若l∥α”则“l⊥m”成立,即充分性成立,若l⊥m,则l∥α或l⊂α,即必要性不成立,则“l∥α”是“l⊥m”充分不必要条件,故选:A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面垂直的性质和定义是解决本题的关键.难度不大,属于基础题6、B【解析】

以作为基底的向量需要是不共线的向量,可以从向量的坐标发现,,选项中的两个向量均共线,得到正确结果是.【详解】解:可以作为基底的向量需要是不共线的向量,中一个向量是零向量,两个向量共线,不合要求中两个向量是,,则故与不共线,故正确;中两个向量是,两个向量共线,项中的两个向量是,两个向量共线,故选:.【点睛】本题考查平面中两向量的关系,属于基础题.7、A【解析】

由点和斜率求出点斜式方程,化为一般式方程即可.【详解】解:过点斜率为的直线方程为,化为一般式方程为;故选:.【点睛】本题考查了由点以及斜率求点斜式方程的问题,属于基础题.8、B【解析】按三角函数的定义,有.9、D【解析】

令,则,所以零点在区间.方程的解所在区间是,故选D.10、B【解析】设抛物线过点的切线方程为,即,将点代入可得,同理都满足方程,即为直线的方程为,与抛物线联立,可得,点到直线的距离,则的面积为,故选B.【方法点晴】本题主要考查利用导数求曲线切线方程以及弦长公式与点到直线距离公式,属于难题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由等比数列的性质可得,结合通项公式可得公比q,从而可得首项.【详解】根据题意,等比数列中,其公比为,,则,解可得,又由,则有,则,则;故答案为:1.【点睛】本题考查等比数列的通项公式以及等比数列性质(其中m+n=p+q)的应用,也可以利用等比数列的基本量来解决.12、【解析】

由的值,可求出的值,再判断角的范围,可判断出,进而将平方,可求出答案.【详解】由题意,,因为,所以,即;又因为,所以,即,而,由于,可知,所以,则,即.故答案为:;.【点睛】本题考查同角三角函数基本关系的应用,考查二倍角公式的应用,考查学生的计算求解能力,属于中档题.13、【解析】

点代入的方程求出k,再由求出直线的斜率,即可写出直线的点斜式方程.【详解】将点代入直线得,,解得,又,,于是的方程为,整理得.故答案为:【点睛】本题考查直线的方程,属于基础题.14、【解析】

作出其图像,可只有两个交点时k的范围为.故答案为15、【解析】

利用除取余法可将十进制数化为二进制数.【详解】利用除取余法得因此,,故答案为.【点睛】本题考查将十进制数转化为二进制数,将十进制数转化为进制数,常用除取余法来求解,考查计算能力,属于基础题.16、3【解析】

,故答案为3.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)设斜率为,则直线的方程为,利用圆的弦长公式,列出方程求得的值,即可得到直线的方程;(2)当直线的斜率不存在时,根据向量的运算,求得,当直线的斜率存在时,设直线的方程为,联立方程组,利用根与系数的关系,以及向量的运算,求得,得到答案.【详解】(1)当直线的斜率不存在时,,不符合题意;当直线的斜率存在时,设斜率为,则直线的方程为,所以圆心到直线的距离,因为,所以,解得,所以直线的方程为..(2)当直线的斜率不存在时,不妨设,,,因为,,所以,,所以,,所以.当直线的斜率存在时,设斜率为,则直线的方程为:,因为直线与轴交于点,所以.直线与圆交于点,,设,,由得,,所以,;因为,,所以,,所以,,所以.综上,.【点睛】本题主要考查了直线与圆的位置关系的应用,以及向量的坐标运算,其中解答中熟记圆的弦长公式,以及联立方程组,合理利用根与系数的关系和向量的运算是解答的关键,着重考查了推理与运算能力,属于中档试题.18、(1);(2).【解析】试题分析:(1)利用向量,建立关于的方程,即可求解的值;(2)写出向量的坐标,利用得出关于的方程,即可求解实数的值.试题解析:(1)(2)由(1)得所以考点:向量的坐标运算.19、(1);(2)见解析【解析】

(1)先求出直线过定点,设圆的一般方程,由题意列方程组,即可求圆的方程;(2)由(1)可知:求得直线的斜率,根据对称性求得点坐标,由在圆外,所以点不能作为直角三角形的顶点,分类讨论,即可求得的值.【详解】(1)直线的方程可化为,由解得∴定点的坐标为.设圆的方程为,则圆心则依题意有解得∴圆的方程为;(2)由(1)知圆的标准方程为,∴圆心,半径.∵是直径的两个端点,∴圆心是与的中点,∵轴上的点在圆外,∴是锐角,即不是直角顶点.若是的直角顶点,则,得;若是的直角顶点,则,得.综上所述,在轴上存在一点,使为直角三角形,或.【点睛】本题考查圆的方程的求法,直线与圆的位置关系,考查分类讨论思想,属于中档题.20、(1)2(2)【解析】

(1)在题干等式中利用边化角思想,结合两角和的正弦公式、内角和定理以及诱导公式计算出,再利用角化边的思想可得出的比值;(2)由(1)中的结果,结合余弦定理求出和的值,再利用同角三角函数的平方关系求出,最后利用三角形的面积公式求出的面积.【详解】(1)由正弦定理得,则,所以,即,化简可得.又,所以.所以,即.(2)由(1)知.由余弦定理及,,得,.解得,因此因为,且所以因此.【点睛】在解三角形的问题时,要根据已知元素的类型合理选择正弦定理与余弦定理解三角形,除此之外,在有边和角的等式中,优先边化角,利用三角恒等变换思想化简求解,能起到简化计算的作用.21、(1);(2)【解析】

(1)设,再根据化简求解方程即可.(2)设过定点的直线方程为,根据轴平分可得.再联立直线与圆的方程,化简

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论