版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏教版七年级数学下册期末检测试卷带答案学校:__________姓名:__________班级:__________考号:__________一、选择题1.下列运算正确的是()A. B.C. D.2.如图,与是同旁内角,它们是由()A.直线,被直线所截形成的B.直线,被直线所截形成的C.直线,被直线所截形成的D.直线,被直线所截形成的3.不等式的解集是()A. B. C. D.4.下列各式从左到右的变形属于因式分解且分解正确的是()A.(x+1)(x-1)=x2-1 B.2x2-y2=(2x+y)(x-y)C.a2+2a+1=a(a+2)+1 D.-a2+4a-4=-(a-2)25.已知关于x的不等式组有且只有三个整数解,则a的取值范围是()A.-2≤a≤-1 B.-2≤a≤-1 C.-2<a≤-1 D.-2<a<-16.下列命题中:①内错角相等;②两点之间线段最短;③直角三角形两锐角互余;④两条平行线被第三条直线所截,所得的一组内错角的角平分线互相平行.属于真命题的有()A.1个 B.2个 C.3个 D.4个7.观察下列式子:4×6-2×4=4×4;6×8-4×6=6×4;8×10-6×8=8×4;…若第n个等式的右边的值大于180,则n的最小值是()A.20 B.21 C.22 D.238.如图,中,,将沿折叠,使得点B落在边上的点F处,若且中有两个内角相等,则的度数为()A.30°或40° B.40°或50° C.50°或60° D.30°或60°二、填空题9.计算(﹣2x3y2)3•4xy2=_____.10.命题“平面内,垂直于同一条直线的两条直线平行”是____命题(填写“真”或“假”).11.在一个多边形中,小于112°的内角最多有___个.12.已知,,则多项式的值是________.13.把方程组中,若未知数满足,则的取值范围是_________.14.如图,在一块长为a米、宽为b米的长方形地上,有一条弯曲的柏油马路,马路的任何地方的水平宽度都是2米,其他部分都是草地,则草地的面积为__________平方米.15.已知一个三角形的两边长分别是和,当这个三角形的第三条边长为偶数时,其长度是________.16.如图,在中,点是边上中点,点是边上中点.若,则____________.三、解答题17.计算(1)(2)(3)18.把下列各式因式分解:(1)4m2﹣n2(2)2a3b﹣18ab3(3)﹣2x2y+x3+xy2(4)x2﹣2x﹣819.用指定的方法解方程组.(1)用代入法解:(2)用加减法解:20.解不等式组,并写出它的整数解.21.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.(1)∠CFD=90°;(2)求证:.22.五一前夕,某时装店老板到厂家选购A,B两种品牌的时装,若购进A品牌的时装5套,B品牌的时装6套,需要950元;若购进A品牌的时装3套,B品牌的时装2套,需要450元.(1)求A,B两种品牌的时装每套进价分别为多少元?(2)若1套A品牌的时装售价130元,1套B品牌的时装售价102元,时装店将购进的A,B两种时装共50套全部售出,所获利润要不少于1470元,问A品牌时装至少购进多少套?23.阅读理解:例1.解方程|x|=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.例2.解不等式|x﹣1|>2,在数轴上找出|x﹣1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为﹣1或3,所以方程|x﹣1|=2的解为x=﹣1或x=3,因此不等式|x﹣1|>2的解集为x<﹣1或x>3.参考阅读材料,解答下列问题:(1)方程|x﹣2|=3的解为;(2)解不等式:|x﹣2|≤1.(3)解不等式:|x﹣4|+|x+2|>8.(4)对于任意数x,若不等式|x+2|+|x﹣4|>a恒成立,求a的取值范围.24.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.25.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P在线段CE上时,请直写出∠NAP、∠HBP、∠APB之间的数量关系:;(2)如图②,当点P在线段DE上时,(1)中的∠NAP、∠HBP、∠APB之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P在直线l2上且在C、D两点外侧运动时,其他条件不变,请直接写出∠NAP、∠HBP、∠APB之间的数量关系.【参考答案】一、选择题1.C解析:C【分析】直接利用同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法依次计算即可.【详解】解:A、,故选项错误,不符合题意;B、,故选项错误,不符合题意;C、,故选项正确,符合题意;D、,故选项错误,不符合题意;故选:C.【点睛】本题考查了同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法,解题的关键是掌握相关的运算法则.2.A解析:A【分析】根据两直线被第三条直线所截,根据角位于两直线的中间,截线的同一侧是同旁内角,可得同旁内角.【详解】解:与是同旁内角,它们是由直线,被直线所截形成的故选A.【点睛】本题考查了同旁内角的含义,熟练掌握含义是解题的关键.3.A解析:A【分析】根据不等式的性质求解即可.【详解】解:故选:A【点睛】本题考察了求一元一次不等式的解集,根据不等式的性质求解即可.4.D解析:D【详解】【分析】本题考查的是因式分解的基本概念,将一个多项式写成几个整式乘积的形式.解:-a2+4a-4=-(a2-4a+4)=-(a-2)2故选D5.C解析:C【分析】先由不等式组解得x的范围,然后结合不等式组有且只有三个整数解得到a的取值范围.【详解】解:由不等式组得,又不等式组有且只有三个整数解,且,∴不等式组的整数解应该是3、4、5三个数,又,∴,即,故选C.【点睛】本题考查不等式的解集,根据不等式组有且只有三个整数解3、4、5及确定是解题关键.6.C解析:C【分析】根据平行线的性质、直角三角形的性质判断即可.【详解】解:①两直线平行,内错角相等,本说法是假命题;②两点之间线段最短,本说法是真命题;③直角三角形两锐角互余,本说法是真命题;④两条平行线被第三条直线所截,所得的一组内错角的角平分线互相平行,本说法是真命题;故选:C.【点睛】本题主要考查证明与命题、平行线的性质及直角三角形的性质,关键是熟记概念进行判断.7.C解析:C【分析】根据规律确定第n个等式:2(n+1)(2n+4)-2n(2n+2)=2(n+1)×4,根据第n个等式的右边的值大于180,列不等式可得结论.【详解】解:第1个式子:4×6-2×4=4×4;第2个式子:6×8-4×6=6×4;第3个式子:8×10-6×8=8×4;…∴第n个等式:2(n+1)(2n+4)-2n(2n+2)=2(n+1)×4;∵第n个等式的右边的值大于180,即2(n+1)×4>180,n>21.5,∴n的最小值是22.故选:C.【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键,注意n的值为正整数,在解得n>21.5时,要注意向上取整.8.B解析:B【分析】分三种情形:①当AE=AF时,②当AF=EF时,③当AE=EF时,分别求解即可.【详解】解:①当AE=AF时,则∠AFE=∠AEF=(180°-∠A),∵∠B=∠EFD=90°-∠A,∠CFD=60°,∴∠AFD=120°,∴(180°-∠A)+90°-∠A=120°,∴∠A=40°.②当AF=EF时,∠AFE=180°-2∠A,同法可得180°-2∠A+90°-∠A=120°,∴∠A=50°.③当AE=EF时,点F与C重合,不符合题意.综上所述,∠A=40°或50°,故选:B.【点睛】本题考查三角形内角和定理,翻折变换等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题9.﹣32x10y8【详解】试题分析:分析:先算乘方,再算乘法(﹣2x3y2)3=(﹣2)3(x3)3(y2)3=﹣8x9y6,所以(﹣2x3y2)3•4xy2=(﹣8x9y6)•4xy2=﹣32x10y8.解:(﹣2x3y2)3•4xy2=(﹣8x9y6)•4xy2=﹣32x10y8点评:本题考查整式的乘法混合运算,按照运算顺序先算乘方再算乘法.10.真【分析】根据平行线的判定方法判断即可.【详解】解:如图,a⊥c,b⊥c,则∠1=∠2=90°,∴a//b,∴“平面内,垂直于同一条直线的两条直线平行”是真命题,故答案为:真.【点睛】本题考查了命题,平行线的判定等知识,解题的关键是熟练掌握平行线的判定方法,属于中考常考题型.11.5【分析】由多边形的内角小于112°,可得外角大于68°,再根据多边形的外角和为360°进行判断即可.【详解】解:由于多边形的内角小于112°,所以这个多边形的外角要大于180°-112°=68°,而多边形的外角和为360°,所以360°÷68°==(个),∴最多有5个,故答案为:5.【点睛】本题考查多边形内角与外角,掌握多边形的外角和为360°是解决问题的关键.12.20【分析】将所求代数式因式分解成含已知式子的形式,再整体代入求值即可得解.【详解】解:∵,∴.故答案是:【点睛】本题考查了因式分解中的提取公因式法、整体代入求值法,比较简单,熟练掌握相关知识点是解决问题的关键.13.【分析】先将方程组中的两个方程相加化简得出的值,再根据可得关于m的一元一次不等式,然后解不等式即可得.【详解】,由①②得:,即,,,解得,故答案为:.【点睛】本题考查了二元一次方程组的解、解一元一次不等式,根据二元一次方程组得出的值是解题关键.14.(ab﹣2b)【分析】根据图形的特点,可以把小路的面积看作是一个底是2米,高是b米的平行四边形,根据平行四边形的面积=底×高,长方形的面积=长×宽,用长方形的面积减去小路的面积即可.【详解】解:由题可得,草地的面积是(ab﹣2b)平方米.故答案为:(ab﹣2b).【点睛】本题考查了平移的实际应用.化曲为直是解题的关键.15.4【分析】先根据三角形的三边关系求出x的取值范围,再由x是偶数求出x的值,进而可得出结论.【详解】解:∵三角形的两边长分别是2cm和4cm,∴4-2<x<4+2,即2cm<x<6cm.∵解析:4【分析】先根据三角形的三边关系求出x的取值范围,再由x是偶数求出x的值,进而可得出结论.【详解】解:∵三角形的两边长分别是2cm和4cm,∴4-2<x<4+2,即2cm<x<6cm.∵x是偶数,∴x=4cm.故答案为:4.【点睛】本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.16.8【分析】三角形的中线平分三角形的面积,先得出△AEC的面积,再得出△ABD的面积,最后得出△ABC的面积【详解】∵点E是DC的中点∴,∴∵点D是AC的中点∴,∴故答案为:8【点睛解析:8【分析】三角形的中线平分三角形的面积,先得出△AEC的面积,再得出△ABD的面积,最后得出△ABC的面积【详解】∵点E是DC的中点∴,∴∵点D是AC的中点∴,∴故答案为:8【点睛】本题考查三角形中线与面积的关系,三角形的中线将三角形分为2个同高等底的小三角形,故这2个小三角形的面积相等.三、解答题17.(1);(2);(3)【分析】(1)按照整式乘除法法则进行运算;(2)按照整数指数幂,负整数指数幂,零次幂进行运算即可;(3)按照整式乘法法则进行运算即可.【详解】(1)(2)解析:(1);(2);(3)【分析】(1)按照整式乘除法法则进行运算;(2)按照整数指数幂,负整数指数幂,零次幂进行运算即可;(3)按照整式乘法法则进行运算即可.【详解】(1)(2)(3)【点睛】本题考查了整式乘除法,整式指数幂,负整数指数幂,零次幂的运算,按照以上运算法则进行运算即可得到结果.18.(1)(2m﹣n)(2m+n);(2)2ab(a﹣3b)(a+3b);(3)x(x﹣y)2;(4)(x﹣4)(x+2).【分析】(1)原式利用平方差公式分解即可;(2)原式先提取公因式,再利用解析:(1)(2m﹣n)(2m+n);(2)2ab(a﹣3b)(a+3b);(3)x(x﹣y)2;(4)(x﹣4)(x+2).【分析】(1)原式利用平方差公式分解即可;(2)原式先提取公因式,再利用平方差公式分解即可;(3)原式先提取公因式,再利用完全平方公式分解即可;(4)原式利用十字相乘法分解即可.【详解】解:(1)原式=(2m﹣n)(2m+n);(2)原式=2ab(a2﹣9b2)=2ab(a﹣3b)(a+3b);(3)原式=x(x2﹣2xy+y2)=x(x﹣y)2;(4)原式=(x﹣4)(x+2).【点睛】此题考查了提公因式法与公式法以及十字相乘法进行因式分解的综合运用,熟练掌握因式分解的方法是解本题的关键.19.(1);(2)【分析】(1)将方程①代入②,可求出,然后将代入①即可求解;(2)先将②×2-①可求出,然后将代入②即可求解.【详解】解:将方程①代入②,得:,解得:,将代入解析:(1);(2)【分析】(1)将方程①代入②,可求出,然后将代入①即可求解;(2)先将②×2-①可求出,然后将代入②即可求解.【详解】解:将方程①代入②,得:,解得:,将代入①,得:,∴原方程组的解为;(2)②×2-①,得:,解得:,将代入②,得:,解得:,∴原方程组的解为.【点睛】本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法——加减消元法、代入消元法是解题的关键.20.,整数解为4,5【分析】先求出每个不等式的解集,然后求出不等式组的解集,再找出整数解即可.【详解】解:解不等式①,得解不等式②,得∴原不等式组的解集为原不等式组的整数解为解析:,整数解为4,5【分析】先求出每个不等式的解集,然后求出不等式组的解集,再找出整数解即可.【详解】解:解不等式①,得解不等式②,得∴原不等式组的解集为原不等式组的整数解为:4,5.【点睛】本题考查了解一元一次不等式组,一元一次不等式组的整数解的应用,关键是能根据不等式的解集找出不等式组的解集.21.(1)证明见解析;(2)证明见解析.【分析】(1)由∠C=∠1得到BE∥CF,根据平行线的性质即可证得∠CFD=∠DGE=90°;(2)首先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1解析:(1)证明见解析;(2)证明见解析.【分析】(1)由∠C=∠1得到BE∥CF,根据平行线的性质即可证得∠CFD=∠DGE=90°;(2)首先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.【详解】证明:(1)∵BE⊥FD,∴∠DGE=90°,∵∠C=∠1,∴BE∥CF,∴∠CFD=∠DGE=90°;(2)∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【点睛】此题考查的知识点是平行线的判定,关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.22.(1)A品牌的时装每套进价为100元,B品牌的时装每套进价为75元.(2)A品牌时装至少购进40套.【分析】(1)设A品牌的时装每套进价为x元,B品牌的时装每套进价为y元,根据“若购进A品牌的时解析:(1)A品牌的时装每套进价为100元,B品牌的时装每套进价为75元.(2)A品牌时装至少购进40套.【分析】(1)设A品牌的时装每套进价为x元,B品牌的时装每套进价为y元,根据“若购进A品牌的时装5套,B品牌的时装6套,需要950元;若购进A品牌的时装3套,B品牌的时装2套,需要450元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设A品牌的时装购进m套,则B品牌的时装购进(50−m)套,根据总利润=每件利润×销售数量(购进数量)结合所获总利润要不少于1470元,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设A品牌的时装每套进价为x元,B品牌的时装每套进价为y元,依题意,得:,解得:.答:A品牌的时装每套进价为100元,B品牌的时装每套进价为75元.(2)设A品牌的时装购进m套,则B品牌的时装购进(50﹣m)套,依题意,得:(130﹣100)m+(102﹣75)(50﹣m)≥1470,解得:m≥40.答:A品牌时装至少购进40套.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(1)x=-1或x=5;(2)1≤x≤3;(3)x>5或x<-3;(4)a≥6【分析】(1)利用在数轴上到2对应的点的距离等于3的点对应的数求解即可;(2)先求出|x-2|=3的解,再求|x-解析:(1)x=-1或x=5;(2)1≤x≤3;(3)x>5或x<-3;(4)a≥6【分析】(1)利用在数轴上到2对应的点的距离等于3的点对应的数求解即可;(2)先求出|x-2|=3的解,再求|x-2|≤3的解集即可;(3)先在数轴上找出|x-4|+|x+2|=8的解,即可得出不等式|x-4|+|x+2|>8的解集;(4)原问题转化为:a大于或等于|x+2|+|x-4|最大值,进行分类讨论,即可解答.【详解】解:(1)∵在数轴上到2对应的点的距离等于3的点对应的数为-1或5,∴方程|x-2|=3的解为x=-1或x=5;(2)在数轴上找出|x-2|=1的解.∵在数轴上到2对应的点的距离等于1的点对应的数为1或3,∴方程|x-2|=1的解为x=1或x=3,∴不等式|x-2|≤1的解集为1≤x≤3.(3)在数轴上找出|x-4|+|x+2|=8的解.由绝对值的几何意义知,该方程就是求在数轴上到4和-2对应的点的距离之和等于8的点对应的x的值.∵在数轴上4和-2对应的点的距离为6,∴满足方程的x对应的点在4的右边或-2的左边.若x对应的点在4的右边,可得x=5;若x对应的点在-2的左边,可得x=-3,∴方程|x-4|+|x+2|=8的解是x=5或x=-3,∴不等式|x-4|+|x+2|>8的解集为x>5或x<-3.(4)原问题转化为:a大于或等于|x+2|+|x-4|最大值.当x≥4时,|x+2|+|x-4|=x+2+x-4=2x-2,当-2<x<4,|x+2|+|x-4|=x+2-x+4=6,当x≤-2时,|x+2|+|x-4|=-x-2-x+4=-2x+2,即|x+2|+|x-4|的最大值为6.故a≥6.【点睛】本题主要考查了绝对值,方程及不等式的知识,是一道材料分析题,通过阅读材料,同学们应当深刻理解绝对值得几何意义,结合数轴,通过数形结合对材料进行分析来解答题目.24.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.【详解】(1)由翻折的性质可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故与∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年企业长期汽车租赁协议精简版版B版
- 2024个人向公司借款协议合同范本
- 2024年专项供货协议模板指导版B版
- 2024年工厂零星装修施工及维护协议一
- 2024年国际专家服务协议标准范本一
- 2024信息安全保密协议信息保密协议书
- 2024年国际原油贸易长期购销合同
- 2024年商铺租赁简明协议范例版
- 2024年度企业形象宣传片摄制合同
- 2024年二手房代理销售授权合同样本版B版
- 食品金黄色葡萄球菌检验原始记录
- 《基础生态学》名词解释——第三版牛翠娟
- 助理物流师讲义
- 电池厂二级安全培训教程V1.0(1)
- 华大基因遗传咨询认证习习题
- (精心整理)特殊疑问句总结及练习
- 预防高处坠落施工方案
- 水泵保养规范执行标准
- 污水处理厂施工的各关键点难点处理措施
- 厦门大学精品课程统计学相关与回归分析知识点讲义
- 颗粒沉降速度计算
评论
0/150
提交评论